Sistem Deteksi Kekerasan Real-Time menggunakan YOLOv5 untuk Keamanan Publik

Fauzan Abdillah, Hani’atul Khoiriyah, Afris Nurfal Aziz, I Gede Wiryawan

Abstract


Kekerasan, baik secara fisik, mental, maupun emosional, merupakan masalah serius yang menghambat pemenuhan hak asasi manusia dan kesempatan untuk berkembang. Penelitian ini mengusulkan solusi untuk mendeteksi kekerasan dengan memanfaatkan algoritma YOLOv5. Proses pengembangan mencakup pengumpulan dataset, pelatihan model, pengujian, dan analisis model. Dataset terdiri dari 6.000 gambar yang dilabeli sebagai "violence" dan “normal”, yang dibagi menjadi train, valid, dan test set. Model dilatih dengan 50 epoch, menunjukkan akurasi deteksi sebesar 73.08%. Evaluasi model menggunakan Confusion Matrix menunjukkan performa yang memadai, dengan 357 gambar violence terdeteksi dengan benar (True Positive). Namun, ada 160 gambar normal yang salah diklasifikasikan sebagai violence (False Positive). Model juga memiliki recall sekitar 86.55% untuk violence dan 80.26% untuk normal. Temuan ini menunjukkan potensi besar solusi ini dalam mendukung upaya pencegahan kekerasan dan pemantauan situasi secara real-time, serta memberikan kontribusi dalam menciptakan lingkungan yang lebih aman dan responsif terhadap kekerasan.

Keywords


deteksi; kekerasan; real-time; YOLOv5

Full Text:

PDF

References


K. R. dan teknologi R. I. Sekjen Kementerian Pendidikan, “Petunjuk Teknis Tata Cara Pelaksanaan Pencegahan dan Penanganan Kekerasan di Lingkungan Satuan Pendidikan,” no. 021, 2023, [Online]. Available: https://jdih.kemdikbud.go.id/sjdih/siperpu/dokumen/salinan/salinan_20231204_154829_SALINAN_BT_RKS JUKNIS PPKSP_sinde.pdf.

Kementerian Pendidikan dan Kebudayaan, “6 (enam) bentuk kekerasan yang didefinisikan dalam Permendikbudristek Nomor 46 Tahun 2023 tentang Pencegahan dan Penanganan Kekerasan di Lingkungan Satuan Pendidikan,” 2024. https://merdekadarikekerasan.kemdikbud.go.id/definisi-dan-bentuk-kekerasan/ (accessed Mar. 17, 2024).

N. Muhamad, “Ada 19 Ribu Kasus Kekerasan di Indonesia, Korbannya Mayoritas Remaja,” databoks, 2023. https://databoks.katadata.co.id/datapublish/2023/09/27/ada-19-ribu-kasus-kekerasan-di-indonesia-korbannya-mayoritas-remaja (accessed Mar. 17, 2024).

W. Anjari, “Fenomena Kekerasan sebagai Bentuk Kejahatan (Violence),” E-Journal WIDYA Yust., vol. 1, no. 1, pp. 42–51, 2014, [Online]. Available: https://media.neliti.com/media/publications/246968-fenomena-kekerasan-sebagai-bentuk-kejaha-60c284aa.pdf.

D. Iskandar Mulyana and M. A. Rofik, “Implementasi Deteksi Real Time Klasifikasi Jenis Kendaraan Di Indonesia Menggunakan Metode YOLOV5,” J. Pendidik. Tambusai, vol. 6, no. 3, pp. 13971–13982, 2022, doi: 10.31004/jptam.v6i3.4825.

S. A. Arun Akash, R. Sri Skandha Moorthy, K. Esha, and N. Nathiya, “Human Violence Detection Using Deep Learning Techniques,” J. Phys. Conf. Ser., vol. 2318, no. 1, 2022, doi: 10.1088/1742-6596/2318/1/012003.

S. Nikkath Bushra, G. Shobana, K. Uma Maheswari, and N. Subramanian, “Smart Video Survillance Based Weapon Identification Using Yolov5,” Proc. 2022 Int. Conf. Electron. Syst. Intell. Comput. ICESIC 2022, no. August, pp. 351–357, 2022, doi: 10.1109/ICESIC53714.2022.9783499.

H. Gao, “A Yolo-based Violence Detection Method in IoT Surveillance Systems,” Int. J. Adv. Comput. Sci. Appl., vol. 14, no. 8, pp. 143–149, 2023, doi: 10.14569/IJACSA.2023.0140817.

C. Ding, S. Wang, N. Liu, K. Xu, Y. Wang, and Y. Liang, “REQ-YOLO: A resource-aware, efficient quantization framework for object detection on FPGAS,” FPGA 2019 - Proc. 2019 ACM/SIGDA Int. Symp. Field-Programmable Gate Arrays, pp. 33–42, 2019, doi: 10.1145/3289602.3293904.

I. Rahil, W. Bouarifi, R. Ghizlane, and O. Mustapha, “an Improved Real-Time Handgun Detection System Using Yolo V5 on a Novel Dataset,” J. Theor. Appl. Inf. Technol., vol. 101, no. 23, pp. 7674–7688, 2023.

M. Boukabous and M. Azizi, “Image and video-based crime prediction using object detection and deep learning,” Bull. Electr. Eng. Informatics, vol. 12, no. 3, pp. 1630–1638, 2023, doi: 10.11591/eei.v12i3.5157.

Jacob Solawetz, “How to Train A Custom Object Detection Model with YOLO v5,” Towardsdatascience, 2020, [Online]. Available: https://towardsdatascience.com/how-to-train-a-custom-object-detection-model-with-yolo-v5-917e9ce13208.

Y. Azhar, A. K. Firdausy, and P. J. Amelia, “Perbandingan Algoritma Klasifikasi Data Mining Untuk Prediksi Penyakit Stroke,” SINTECH (Science Inf. Technol. J., vol. 5, no. 2, pp. 191–197, 2022, doi: 10.31598/sintechjournal.v5i2.1222.

F. Rizki, M. P. Kharisma Putra, M. A. Assuja, and F. Ariany, “Implementasi Deep Leraning Lenet Dengan Augmentasi Data Pada Identifikasi Anggrek,” J. Inform. dan Rekayasa Perangkat Lunak, vol. 4, no. 3, pp. 357–366, 2023, doi: 10.33365/jatika.v4i3.3652.

Muhammad Nur Ihsan Muhlashin and A. Stefanie, “Klasifikasi Penyakit Mata Berdasarkan Citra Fundus Menggunakan YOLO V8,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 2, pp. 1363–1368, 2023, doi: 10.36040/jati.v7i2.6927.




DOI: https://doi.org/10.31284/p.snestik.2024.5861

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Fauzan Abdillah, Hani’atul Khoiriyah, Afris Nurfal Aziz, I Gede Wiryawan

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.