Prediksi Harga Rumah Menggunakan Metode Regressi Lasso
Abstract
A house is one of the basic human needs. This research aims to predict house prices using the Lasso regression method. With the increasing property market and house prices continuing to soar, accurate price predictions are important for investors, developers, and home buyers. This study uses a dataset of houses in the Greater Jakarta area, with features such as land area, building area, number of bedrooms, bathrooms, and garages. The methodology used includes data pre-processing, feature standardization, division of training and test data, and application of the Lasso regression model with hyperparameter optimization using GridSearchCV. Prediction results are visualized through scatter plots comparing actual values with predictions, as well as residual plots to assess model performance. This research provides insights into the factors that influence house prices and provides predictive tools that can assist in decision-making in the property market. This approach is expected to improve understanding of house price dynamics and facilitate better investment strategies in the real estate sector.
Keywords
Full Text:
PDFReferences
. Seng Jia Xin, Kamil Khalid.(2018). “Modelling House Price Using Ridge Regression and Lasso Regression “. International Journal of Engineering & Technology, 7 (4.30), pp.498-501.
. Linda Uswatun Hasana, Inayatul Maul⁾ , Abu Tholi. (2023). “ANALISIS PREDIKSI HARGA RUMAH DI JABODETABEK MENGGUNAKAN MULTIPLE LINEAR REGRESSION”. Jurnal Informatika Kaputama (JIK), Vol. 7 No.2.
. Rafif Fauzan Almahd , Windha Mega Pradnya D. (2024). “Prediksi Harga Rumah Di Kabupaten Bantul Menggunakan Algoritma Support Vector Regression”. Jurnal Teknik Informatika dan Sistem Informasi, Vol. 11, No. 2, Hal. 152-165.
. Favorisen Rosyking Lumbanraja, Reza Aji Saputra, Kurnia Muludi, Astria Hijriani dan Akmal Junaidi. (2021). “Implementasi Support Vector Machine dalam Memprediksi Harga Rumah pada Perumahan di Kota Bandar Lampung”. Ilmu Komputer Unila Publishing Network all right reserve, Vol 2 No. 3, pp. 327-335.
. Muhammad Arik Verdiansyah* , Suwanda. (2023). “Penerapan Metode Regresi Komponen Utama Kernel untuk Prediksi Harga Rumah”. Bandung Conference Series: Statistics, hal. 663-661.
. Guntur Wahyu Kusuma, Ika Yuni Wulansari. (2019). “ANALISIS KEMISKINAN DAN KERENTANAN KEMISKINAN DENGAN REGRESI RIDGE, LASSO, DAN ELASTIC-NET DI PROVINSI JAWA TENGAH TAHUN 2017”. Seminar Nasional Official Statistics 2019: Pengembangan Official Statistics dalam mendukung Implementasi SDG’s, hal. 503-513.
. Muhammad Robbani, Fitriani Agustiani, Nar Herrhyanto. (2019). “REGRESI LEAST ABSOLUTE SHRINKAGE AND SELECTION OPERATOR (LASSO) PADA KASUS INFLASI DI INDONESIA TAHUN 2014-2017”. J u r n a l E u r e k a M a t i k a , V o l. 7, N o. 2, hal. 1-16.
. Imi Sartika, Naomi Nessyana Debataraja, Nurfitri Imro’ah. (2020). “ANALISIS REGRESI DENGAN METODE LEAST ABSOLUTE SHRINKAGE AND SELECTION OPERATOR (LASSO) DALAM MENGATASI MULTIKOLINEARITAS”. Buletin Ilmiah Math. Stat. dan Terapannya (Bimaster), Volume 09, No. 1, hal 31 – 38.
. Kgs Muhammad Benyamin Azhary. (2023). “Analisis
Tren Kepemilikan Rumah di Kota Palembang dan Prediksi Harga Rumah memanfaatkan Machine Learning”. JURNAL PERENCANAAN WILAYAH PPS UHO, Vol.8, No.2, hal. 165-173.
. Ummi Athiyah , Arnelka Hananta , Taufik Maulidi , Vico Meylana Eka Putra , Theo Felix Harianto Purba , Elisabeth Angeline Wilhelmina Bakowatu. (2021). “Sistem Pendukung Keputusan Prediksi Harga Rumah Kost untuk Mahasiswa IT Telkom Purwokerto Menggunakan Metode Fuzzy Tsukamoto Berbasis Web”. Journal of Dinda, Vol. 1 No. 2, hal. 77 - 81.
. Ihda Innar Ridho, Galih Mahalisa, Dwi Retno Sari, Ihsanul Fikri. (2022). “METODE NEURAL NETWORK UNTUK PENENTUAN AKURASI PREDIKSI HARGA RUMAH”. Technologia, Vol 13, No. 1, hal. 56-58.
. Evita Fitri. (2023). “Analisis Perbandingan Metode Regresi Linier, Random Forest Regression dan Gradient Boosted Trees Regression Method untuk Prediksi Harga Rumah”. JOURNAL OF APPLIED COMPUTER SCIENCE AND TECHNOLOGY (JACOST), Vol. 4 No. 1, hal. 58 – 64.
. Cep Haryanto, Nining Rahaningsih, Fadhil Muhammad Basysyar. (2023). “KOMPARASI ALGORITMA MACHINE LEARNING DALAM MEMPREDIKSI HARGA RUMAH”. Jurnal Mahasiswa Teknik Informatika, Vol. 7 No. 1, hal. 533-539.
. Muhammad Labib Mu'tashim, Sekar Ayu Damayanti, Hanan Nadia Zaki, Toni Muhayat, Rio Wirawan. (2021). “Analisis Prediksi Harga Rumah Sesuai Spesifikasi Menggunakan Multiple Linear Regression”. JURNAL INFORMATIK Edisi ke-17, Nomor 3, hal. 238-245.
. Evi Febrion Rahayuningtyas , Feny Novia Rahayu , Yufis Azhar. (2021). “Prediksi Harga Rumah Menggunakan General Regression Neural Network”. JURNAL INFORMATIKA, Vol.8 No.1 April 2021, Halaman 59~66.
. Andi Saiful, Septi Andryana, Aris Gunaryati. (2021). “Prediksi Harga Rumah Menggunakan Web Scrapping Dan Machine Learning Dengan Algoritma Linear Regression”. Jurnal Teknik Informatika dan Sistem Informasi Vol. 8, No. 1, Hal. 41-50.
. Andreas Nugroho Sihananto, Anggraini Puspita Sari, Heri Khariono, Rifki Akhmad Fernanda, Devan Cakra Mudra Wijaya. (2022). “Implementasi Metode K-Means Untuk Pengelompokan Kasus Covid-19 Tingkat Provinsi Di Indonesia”. Jurnal Informatika dan Sistem Informasi, Vol. 3, No. 1, Hal. 76-85.
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Kemas Alfin Yazi Bara Mentari
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.