Studi Ekperimental Pengaruh Variasi Jenis Baterai (Alkaline, Lithium Ion, dan Nickel Metal Hydride) Terhadap Kecepatan, Gaya, dan Daya pada Konsep Kereta Elektromagnet
Abstract
Gaya elektromagnet bisa dimanfaatkan sebagai kendaraan. Banyak penelitian yang menggunakan gaya elektromagnet sebagai penghasil levitasi pada kereta dan gaya dorong pada kereta. Penelitian ini coba memanfaatkan gaya elektromagnet untuk menggerakan baterai yang diberi magnet saat memasuki lintasan tembaga. Hasil pengukuran kecepatan didapatkan baterai dengan lithium ion 1.16 m/s, Ni-MH 0.77 m/s dan Alkaline 0.85 m/s. Namun hasil tersebut jika dibandingkan dengan performa per watt didapatkan baterai Ni-MH memiliki nilai perbandingan terbaik, sedangkan lithium ion memiliki performa per watt terendah.
Keywords
Full Text:
PDFReferences
D. H. Staelin, “Electromagnetics and Applications,” p. 443.
H. C. Lai and N. P. Singh, “Medical applications of electromagnetic fields,” IOP Conf. Ser. Earth Environ. Sci., vol. 10, p. 012006, Apr. 2010, doi: 10.1088/1755-1315/10/1/012006.
D. A. Patriawan, B. Pramujati, and H. Nurhadi, “Preliminary Study on Magnetic Levitation Modeling Using PID Control,” Appl. Mech. Mater., vol. 493, pp. 517–522, Jan. 2014, doi: 10.4028/www.scientific.net/AMM.493.517.
B. Pramujati, H. Nurhadi, and D. A. Patriawan, “A Study on the Effect of an Attractive and a Repulsive Forces with Feedback Control on a Magnetic Levitation System,” vol. 6, no. 6, p. 5, 2015.
D. A. Patriawan, H. Irawan, A. Noerpamoengkas, B. Setyono, and A. Y. Ismail, “Definition, criteria and approaches in designing suspension system with active controls,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1010, p. 012006, Jan. 2021, doi: 10.1088/1757-899X/1010/1/012006.
B. L. J. Gysen, J. J. H. Paulides, J. L. G. Janssen, and E. A. Lomonova, “Active Electromagnetic Suspension System for Improved Vehicle Dynamics,” IEEE Trans. Veh. Technol., vol. 59, no. 3, pp. 1156–1163, Mar. 2010, doi: 10.1109/TVT.2009.2038706.
T. Keishi, “Electromagnetic Field Analysis and Its Applications to Product Development,” p. 9.
R. Ahmed, Y. L. Jun, M. F. Azhar, and N. U. R. Junejo, “Comprehensive Study and Review on Maglev Train System,” Appl. Mech. Mater., vol. 615, pp. 347–351, Aug. 2014, doi: 10.4028/www.scientific.net/AMM.615.347.
K. Sawada, “1. Superconducting Maglev,” p. 10, 2000.
Z. Qadir, A. Munir, T. Ashfaq, H. S. Munawar, M. A. Khan, and K. Le, “A prototype of an energy-efficient MAGLEV train: A step towards cleaner train transport,” Clean. Eng. Technol., vol. 4, p. 100217, Oct. 2021, doi: 10.1016/j.clet.2021.100217.
C. Palmer, “Engineered to Go Fast, Maglev Trains Inch Forward,” Engineering, p. S2095809921002289, Jun. 2021, doi: 10.1016/j.eng.2021.06.001.
Y. He, J. Wu, G. Xie, X. Hong, and Y. Zhang, “Data-driven relative position detection technology for high-speed maglev train,” Measurement, vol. 180, p. 109468, Aug. 2021, doi: 10.1016/j.measurement.2021.109468.
F. Guo, S. Wu, J. Liu, Z. Wu, S. Fu, and S. Ding, “A time-domain stepwise fatigue assessment to bridge small-scale fracture mechanics with large-scale system dynamics for high-speed maglev lightweight bogies,” Eng. Fract. Mech., vol. 248, p. 107711, May 2021, doi: 10.1016/j.engfracmech.2021.107711.
M. E. Yousif, “The Unified Force of Nature: 1-The Electric & Magnetic Forces,” p. 18.
C. Iclodean, B. Varga, N. Burnete, D. Cimerdean, and B. Jurchi?, “Comparison of Different Battery Types for Electric Vehicles,” IOP Conf. Ser. Mater. Sci. Eng., vol. 252, p. 012058, Oct. 2017, doi: 10.1088/1757-899X/252/1/012058.
R. Borah, F. R. Hughson, J. Johnston, and T. Nann, “On battery materials and methods,” Mater. Today Adv., vol. 6, p. 100046, Jun. 2020, doi: 10.1016/j.mtadv.2019.100046.
Refbacks
- There are currently no refbacks.