Proses Pembuatan Biofuel dengan Metode perengakahan Menggunakan Katalis Padat
Abstract
that reason, it necessary to create alternative fuels which are friendly to the
environment to meet the fuels need in society. Fossil fuel is a non-renewable fuel.
Biofuel as an alternative fuel can be taken as a solution to solve this problem. The
reviewd aim was to determine the effect of raw materials used on yield product and
the different effects of temperature and catalysts on the yield of special materials
(gasoline, diesel, kerosene) biofuel. Biofuel production started from the
preparation of raw materials, catalylic, and catalytic cracking process using a
fixed bed reactor. Raw materials greatly affected yield product. The highest yield
products were being gotten from RBDPS raw materials of 93.29%. Biofuel from
used cooking oil and concentration of red sludge catalyst of 15% produced the
highest biofuel with gasoline compound of 73.86% and kerosene compound of
26.14%. Biofuel from camelina oil with ZSM-5-Zn catalyst concentration of 30%
produced the highest gasoline yield of 75.65%.
Full Text:
PDFReferences
Annex, “Pengaruh Suhu Aktivasi Terhadap Daya Serap Karbon Aktif Kulit Kemiri,”
vol. V, pp. SNF2016-MPS-135-SNF2016-MPS-140, 2017, doi:
21009/0305020226.
A. Budianto, D. H. Prajitno, A. Roesyadi, and K. Budhikarjono, “HZSM-5
CATALYST FOR CRACKING PALM OIL TO BIODIESEL : A COMPARATIVE
STUDY WITH AND,” vol. 15, no. 1, pp. 81–90, 2014.
A. Budianto, D. S. Hajj, and D. A. Rp, “Pembuatan Biofuel dengan Proses
Perengkahan dari Palm Fatty Acid Distillate ( PFAD ) Menggunakan Katalis CaO,”
pp. 607–614, 2019.
R. Tambun, R. P. Saptawaldi, M. A. Nasution, and N. Oktris, “Pembuatan Biofuel
dari Palm Stearin dengan Proses Perengkahan Katalitik menggunakan Katalis ZSM-
Catalytic Cracking Process to Product Biofuel from Palm Stearin by using
Catalyst ZSM-5,” vol. 11, no. 1, pp. 46–52, 2016.
A. Budianto, S. Sumari, W. S. Pambudi, and N. Andriani, “Uji Coba Produksi
Biofuel dari RBD Stearin dalam Reaktor Fixed Bed dengan Metode Cracking,”
Pros. Semin. Nas. Sains dan Teknol. Terap., pp. 735–740, 2019.
W. Pangestu, Yelmida, and Zultinar, “Perengkahan Katalitik Palm Fatty Acid
Distillate Menjadi Biofuel Menggunakan Katalis Fly Ash Sawit,” vol. 2, no. 1, pp.
–5, 2015.
M. A.Yusron, Yelmida, and Zultinar, “Perengkahan Katalitik Palm Fatty Acid
Distillate Menjadi Biofuel Menggunakan Katalis Natrium Karbonat dengan Variasi
Temperatur dan Konsentrasi Katalis Natrium Karbonat,” vol. 2, no. 2, pp. 1–6,
N. Nazarudin and U. Jambi, “KONVERSI CRUDE PALM OIL ( CPO ) MENJADI
BIOFUEL DENGAN PERENGKAHAN KATALITIK MENGGUNAKAN
KATALIS Cr-ZEOLIT ALAM,” no. March, 2018.
A. A. Mancio et al., “Thermal catalytic cracking of crude palm oil at pilot scale:
Effect of the percentage of Na2CO3 on the quality of biofuels,” Ind. Crops Prod.,
vol. 91, pp. 32–43, 2016, doi: 10.1016/j.indcrop.2016.06.033.
I. Istadi et al., “Effects of ion exchange process on catalyst activity and plasmaassisted reactor toward cracking of palm oil into biofuels,” Bull. Chem. React. Eng.
& Catal., vol. 14, no. 2, pp. 459–467, 2019, doi:
9767/bcrec.14.2.4257.459-467.
M. Subsadsana, P. Kham-Or, P. Sangdara, P. Suwannasom, and C. Ruangviriyachai,
“Synthesis and catalytic performance of bimetallic NiMo-and NiW-ZSM-5/MCM-
composites for production of liquid biofuels,” Ranliao Huaxue Xuebao/Journal
Fuel Chem. Technol., vol. 45, no. 7, pp. 805–816, 2017, doi: 10.1016/s1872-
(17)30039-7.
Z. Zheng, J. Wang, Y. Wei, X. Liu, F. Yu, and J. Ji, “Effect of La-Fe/Si-MCM-41
catalysts and CaO additive on catalytic cracking of soybean oil for biofuel with low
aromatics,” J. Anal. Appl. Pyrolysis, vol. 143, no. 18, p. 104693, 2019, doi:
1016/j.jaap.2019.104693.
I. G. Andy, A. Parahita, Y. W. Mirzayanti, I. Gunardi, and A. Roesyadi, “Production
of Biofuel via Catalytic Hydrocracking of Kapuk ( Ceiba pentandra ) Seed Oil with
NiMo / HZSM-5 Catalyst,” vol. 06001, pp. 1–5, 2018.
Y. W. Mirzayanti, P. D H, and R. A, “Catalytic hydrocracking of Kapuk seed oil (
Ceiba pentandra ) to produce biofuel using Zn-Mo supported HZSM-5 catalyst
Catalytic hydrocracking of Kapuk seed oil ( Ceiba pentandra ) to produce biofuel
using Zn-Mo supported HZSM-5 catalyst,” 2017.
A. Budianto, S. Sumari, and K. Udyani, “BIOFUEL PRODUCTION FROM
NYAMPLUNG OIL USING CATALYTIC CRACKING PROCESS WITH ZnHZSM-5 / ? ALUMINA CATALYST,” vol. 10, no. 22, pp. 10317–10323, 2015.
Hartati et al., “Highly selective hierarchical ZSM-5 from kaolin for catalytic
cracking of Calophyllum inophyllum oil to biofuel,” J. Energy Inst., 2020, doi:
1016/j.joei.2020.06.006.
A. M. Rabie, E. A. Mohammed, and N. A. Negm, “Feasibility of modified bentonite
as acidic heterogeneous catalyst in low temperature catalytic cracking process of
biofuel production from nonedible vegetable oils,” J. Mol. Liq., vol. 254, no. 2018,
pp. 260–266, 2018, doi: 10.1016/j.molliq.2018.01.110.
I. Aziz, Y. Kurnianti, N. Saridewi, L. Adhani, and W. Permata, “Utilization of
Coconut Shell as Cr2O3 Catalyst Support for Catalytic Cracking of Jatropha Oil into
Biofuel,” J. Kim. Sains dan Apl., vol. 23, no. 2, pp. 39–45, 2020, doi:
14710/jksa.23.2.39-45.
I. Aziz, L. Adhani, T. Yolanda, and N. Saridewi, “Catalytic cracking of Jatropa
curcas oil using natural zeolite of Lampung as a catalyst,” IOP Conf. Ser. Earth
Environ. Sci., vol. 299, no. 1, pp. 6–13, 2019, doi: 10.1088/1755-
/299/1/012065.
X. Zhao, L. Wei, S. Cheng, and J. Julson, “Optimization of catalytic cracking
process for upgrading camelina oil to hydrocarbon biofuel,” Ind. Crops Prod., vol.
, pp. 516–526, 2015, doi: 10.1016/j.indcrop.2015.09.019.
X. Zhao, L. Wei, S. Cheng, Y. Huang, Y. Yu, and J. Julson, “Catalytic cracking of
camelina oil for hydrocarbon biofuel over ZSM-5-Zn catalyst,” Fuel Process.
Technol., vol. 139, pp. 117–126, 2015, doi: 10.1016/j.fuproc.2015.07.033.
X. Zhao, L. Wei, S. Cheng, Y. Cao, J. Julson, and Z. Gu, “Catalytic cracking of
carinata oil for hydrocarbon biofuel over fresh and regenerated Zn/Na-ZSM-5,”
Appl. Catal. A Gen., vol. 507, pp. 44–55, 2015, doi: 10.1016/j.apcata.2015.09.031.
C. Li et al., “Catalytic cracking of Swida wilsoniana oil for hydrocarbon biofuel
over Cu-modified ZSM-5 zeolite,” Fuel, vol. 218, no. November 2017, pp. 59–66,
, doi: 10.1016/j.fuel.2018.01.026.
Z. D. Yigezu and K. Muthukumar, “Biofuel production by catalytic cracking of
sunflower oil using vanadium pentoxide,” J. Anal. Appl. Pyrolysis, vol. 112, pp.
–347, 2015, doi: 10.1016/j.jaap.2015.01.002.
L. Adhani, R. Masrida, N. P. Angela, and R. R. Nugroho, “Analisis Efektivitas
Katalis Fe / Zeolit Pada Cracking Minyak Jelantah Dalam Pembuatan Biofuel,” vol.
, no. 1, pp. 7–11, 2020.
S. Arita, L. N. Komariah, and O. Alfernando, “The effect of H-USY catalyst in
catalytic cracking of waste cooking oil to produce biofuel,” no. February, 2019, doi:
24845/ijfac.v4.i2.67.
A. R. Ratton Coppos, S. Kahn, and L. E. P. Borges, “Biofuels production by thermal
cracking of soap from brown grease,” Ind. Crops Prod., vol. 112, no. July 2017, pp.
–568, 2018, doi: 10.1016/j.indcrop.2017.12.010.
H. Da Silva Almeida et al., “Production of biofuels by thermal catalytic cracking of
scum from grease traps in pilot scale,” J. Anal. Appl. Pyrolysis, vol. 118, pp. 20–33,
, doi: 10.1016/j.jaap.2015.12.019.
D. K. Sari, A. Sundaryono, and D. Handayani, “LIMBAH CAIR PABRIK
MINYAK KELAPA SAWIT DENGAN KATALIS MoNi / HZ,” vol. 1, pp. 127–
, 2017.
S. Lestari, A. Sundaryono, R. Elvia, and U. Bengkulu, “Preparasi dan Karakterisasi
Katalis Mo-Ni/HZ dengan Metode Impregnasi untuk Cracking Katalitik Minyak
Limbah Cair Pengolahan Kelapa Sawit menjadi Bahan Bakar Nabati 1,2,3,” vol. 3,
no. 1, pp. 91–97, 2019.
A. Sundaryono, D. Handayani, Budiman, and S. Winda, “Perengkahan Katalitik
Metil Ester dari Minyak Limbah Cair Pabrik Minyak Kelapa Sawit dengan Katalis
Cr/Mo/HZA dan Ni/Mo/HZA,” vol. 25, no. 1, pp. 78–84, 2015.
F. M. Wako, A. S. Reshad, M. S. Bhalerao, and V. V. Goud, “Catalytic cracking of
waste cooking oil for biofuel production using zirconium oxide catalyst,” Ind. Crops
Prod., vol. 118, no. March, pp. 282–289, 2018, doi: 10.1016/j.indcrop.2018.03.057.
Refbacks
- There are currently no refbacks.