Surabaya land cover prediction based on Landsat Satellite using the Multi-layer Perceptron Method
Abstract
Keywords
Full Text:
PDFReferences
H. Shafizadeh-Moghadam, Q. Weng, H. Liu, and R. Valavi, “Modeling the spatial variation of urban land surface temperature in relation to environmental and anthropogenic factors: a case study of Tehran, Iran,” GIsci Remote Sens, vol. 57, no. 4, pp. 483–496, May 2020, doi: 10.1080/15481603.2020.1736857.
L. de F. Peres, A. J. de Lucena, O. C. Rotunno Filho, and J. R. de A. França, “The urban heat island in Rio de Janeiro, Brazil, in the last 30 years using remote sensing data,” International Journal of Applied Earth Observation and Geoinformation, vol. 64, pp. 104–116, 2018, doi: 10.1016/j.jag.2017.08.012.
Md. N. Rahman et al., “Impact of Urbanization on Urban Heat Island Intensity in Major Districts of Bangladesh Using Remote Sensing and Geo-Spatial Tools,” Climate, vol. 10, no. 1, p. 3, Jan. 2022, doi: 10.3390/cli10010003.
O. Strashok, M. Ziemiańska, and V. Strashok, “Evaluation and Correlation of Normalized Vegetation Index and Moisture Index in Kyiv (2017–2021),” Journal of Ecological Engineering, vol. 23, no. 9, pp. 212–218, Sep. 2022, doi: 10.12911/22998993/151884.
A. Ménard and D. J. Marceau, “Exploration of Spatial Scale Sensitivity in Geographic Cellular Automata,” Environ Plann B Plann Des, vol. 32, no. 5, pp. 693–714, Oct. 2005, doi: 10.1068/b31163.
S. Sultana and A. N. V. Satyanarayana, “Urban heat island intensity during winter over metropolitan cities of India using remote-sensing techniques: impact of urbanization,” Int J Remote Sens, vol. 39, no. 20, pp. 6692–6730, Oct. 2018, doi: 10.1080/01431161.2018.1466072.
“Landsat 8 (L8) Data Users Handbook,” 2019.
S. Sultana and A. N. V. Satyanarayana, “Assessment of urbanisation and urban heat island intensities using landsat imageries during 2000 – 2018 over a sub-tropical Indian City,” Sustain Cities Soc, vol. 52, p. 101846, Jan. 2020, doi: 10.1016/j.scs.2019.101846.
Timofeev, Classification and Regression Trees (CART) Theory and Applications ferda ferda. 2004.
H. Taud and J. F. Mas, “Multilayer Perceptron (MLP),” 2018, pp. 451–455. doi: 10.1007/978-3-319-60801-3_27.
J.-F. Mas, M. Kolb, M. Paegelow, M. T. Camacho Olmedo, and T. Houet, “Inductive pattern-based land use/cover change models: A comparison of four software packages,” Environmental Modelling & Software, vol. 51, pp. 94–111, Jan. 2014, doi: 10.1016/j.envsoft.2013.09.010.
B. Halder, J. Bandyopadhyay, and P. Banik, “Monitoring the effect of urban development on urban heat island based on remote sensing and geo-spatial approach in Kolkata and adjacent areas, India,” Sustain Cities Soc, vol. 74, p. 103186, Nov. 2021, doi: 10.1016/j.scs.2021.103186.
C. I. Portela, K. G. Massi, T. Rodrigues, and E. Alcântara, “Impact of urban and industrial features on land surface temperature: Evidences from satellite thermal indices,” Sustain Cities Soc, vol. 56, May 2020, doi: 10.1016/j.scs.2020.102100.
R. Bala, R. Prasad, and V. P. Yadav, “Quantification of urban heat intensity with land use/land cover changes using Landsat satellite data over urban landscapes,” Theor Appl Climatol, vol. 145, no. 1–2, pp. 1–12, Jul. 2021, doi: 10.1007/s00704-021-03610-3.
S. Keesstra et al., “Soil-Related Sustainable Development Goals: Four Concepts to Make Land Degradation Neutrality and Restoration Work,” Land (Basel), vol. 7, no. 4, p. 133, Nov. 2018, doi: 10.3390/land7040133.
A. Amindin, S. Pouyan, H. R. Pourghasemi, S. Yousefi, and J. P. Tiefenbacher, “Spatial and temporal analysis of urban heat island using Landsat satellite images,” Environmental Science and Pollution Research, vol. 28, no. 30, pp. 41439–41450, Aug. 2021, doi: 10.1007/s11356-021-13693-0.
DOI: https://doi.org/10.31284/j.jemt.2023.v3i2.4321
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Shanas Septy Prayuda, Maritha Nilam Kusuma
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.