ANALISA EMPIRIS DISTRIBUSI KOROSI TULANGAN BALOK BETON BERTULANG BERDASARKAN KUAT TEKAN DAN SELIMUT BETON

Muhammad Rigga Arista, Indra Komara, Jaka Propika, Eka Susanti

Abstract


Korosi menjadi pertimbangan penting dalam hal durabilitas dan degradasi kapasitas sesuai masa layan. Pada studi ini variable durabilitas berdasarkan mutu beton dan tebal selimut beton di investigasi. Tiga macam mutu beton berurutan, 30 Mpa, 40 Mpa dan 50 Mpa disertai tebal selimut beton 20mm, 30mm dan 40mm dianalisa. Semua parameter tersebut di implementasikan pada elemen struktur balok yang diposisikan dengan dengan pantai dan dikategorikan sebagai struktur tangka W1 atau struktur beton yang berkontak dengan air dan harus memiliki permeabilitas yang baik. Evaluasi dilakukan secara empiris dengan meninjau percepatan korosi hingga waktu layan 25 tahun. Hasil analisa empiris akan dibandingkan dengan pemodelan struktur pada tahun ke 1 menggunakan program bantu ETABS di ikuti analisa perilaku dan pola retak menggunakan Response 2000. Sebagai hasil, semakin kecil tebal selimut beton semakin besar nilai mass loss yang akan didapatkan. Nilai tersebut berbanding lurus dengan distribusi korosi. Nilai kuat tekan beton dalam hal ini memberikan peningkatan momen nominal dan perilaku struktur, akan tetapi semakin besar nilai mutu beton semakin brittle perliku balok tersebut yang mana akan memperbesar nilai mass loss. Sebagai tambahan lebar retak dan distribusi korosi pertahun mengalami peningkatan dengan tinjauan korosi secara uniform.

Keywords


Durabilitas; beton bertulang; momen kapasitas; korosi

Full Text:

PDF

References


R. Bayuaji et al., “The effect of rice husk ash addition as pozzolan on geopolymer binder using alkali activators,” IOP Conf. Ser. Mater. Sci. Eng., vol. 588, no. 1, 2019, doi: 10.1088/1757-899X/588/1/012035.

R. Bayuaji, M. Sigit Darmawan, N. A. Husin, R. B. Anugraha, A. Budipriyanto, and M. G. Stewart, “Corrosion damage assessment of a reinforced concrete canal structure of power plant after 20 years of exposure in a marine environment: A case study,” Eng. Fail. Anal., vol. 84, no. June 2017, pp. 287–299, 2018, doi: 10.1016/j.engfailanal.2017.11.014.

W. Wibowo and P. Gunawan, “Pengaruh Korosi Baja Tulangan Terhadap Kuat Geser Balok Beton Bertulang,” Media Tek. Sipil, vol. 7, no. 1, pp. 21-30–30, 2007.

M. Maalej, S. F. U. Ahmed, and P. Paramasivam, “Corrosion durability and structural response of functionally-graded concrete beams,” J. Adv. Concr. Technol., vol. 1, no. 3, pp. 307–316, 2003, doi: 10.3151/jact.1.307.

I. Komara, A. Tambusay, W. Sutrisno, P. Suprobo, and D. Iranata, “The Investigation study of improving Durability Performance of Marine Infrastructure by using the Engineered Cementitious Composite,” in The 14th International Student Conference on Advanced Science and Technology (ICAST) 2019, 2019, pp. 8–12, doi: 10.4324/9780367853815-2.

M. Mooy, A. Tambusay, I. Komara, W. Sutrisno, Faimun, and P. Suprobo, “Evaluation of Shear-Critical Reinforced Concrete Beam Blended with Fly Ash,” IOP Conf. Ser. Earth Environ. Sci., vol. 506, p. 012041, 2020, doi: 10.1088/1755-1315/506/1/012041.

W. N. Oktaviani, A. Tambusay, I. Komara, W. Sutrisno, F. Faimun, and P. Suprobo, “Flexural Behaviour of a Reinforced Concrete Beam Blended with Fly ash as Supplementary Material,” IOP Conf. Ser. Earth Environ. Sci., vol. 506, p. 012042, 2020, doi: 10.1088/1755-1315/506/1/012042.

I. Komara, P. Suprobo, D. Iranata, A. Tambusay, and W. Sutrisno, “Experimental investigations on the durability performance of normal concrete and engineered cementitious composite,” IOP Conf. Ser. Mater. Sci. Eng., vol. 930, no. 1, 2020, doi: 10.1088/1757-899X/930/1/012056.

A. Apriyanto, M. Irmawan, and E. Wahyuni, “Pengaruh Korosi Tulangan Balok Beton Bertulang Terhadap Kuat Lentur Berbasis Waktu Dengan Menggunakan Software LUSAS,” pp. 1–6, 1990.

I. Komara, A. Tambusay, W. Sutrisno, and P. Suprobo, “Engineered Cementitious Composite as an innovative durable material: A review,” ARPN J. Eng. Appl. Sci., vol. 14, no. 4, pp. 822–833, 2019.

R. J. Thomas, A. J. Fellows, and A. D. Sorensen, “Durability analysis of recycled asphalt pavement as partial coarse aggregate replacement in a high-strength concrete mixture,” J. Mater. Civ. Eng., vol. 30, no. 5, pp. 1–7, 2018, doi: 10.1061/(ASCE)MT.1943-5533.0002262.

C. R. Gagg, “Cement and concrete as an engineering material: An historic appraisal and case study analysis,” Eng. Fail. Anal., vol. 40, pp. 114–140, 2014, doi: 10.1016/j.engfailanal.2014.02.004.

C. Qiao, P. Suraneni, T. Nathalene Wei Ying, A. Choudhary, and J. Weiss, “Chloride binding of cement pastes with fly ash exposed to CaCl 2 solutions at 5 and 23 °C,” Cem. Concr. Compos., vol. 97, no. 2019, pp. 43–53, 2019, doi: 10.1016/j.cemconcomp.2018.12.011.

K. Kobayashi, D. Le, and K. Rokugo, “Effects of crack properties and water-cement ratio on the chloride proo fi ng performance of cracked SHCC suffering from chloride attack,” Cem. Concr. Compos., vol. 69, pp. 18–27, 2016, doi: 10.1016/j.cemconcomp.2016.03.002.

E. Booya, K. Gorospe, H. Ghaednia, and S. Das, “Durability properties of engineered pulp fibre reinforced concretes made with and without supplementary cementitious materials,” Compos. Part B Eng., vol. 172, no. January, pp. 376–386, 2019, doi: 10.1016/j.compositesb.2019.05.070.

B. Y. P. K. Mehta and R. W. Burrows, “Building Durable Structures in the 21st Century,” no. March, pp. 57–63, 2001.

O. E. Gjørv, “Durability design and quality assurance of major concrete infrastructure,” vol. 1, no. 1, pp. 45–63, 2013.

M. G. Alexander, F. Dehn, and P. Moyo, Concrete Repair, Rehabilitation and Retrofitting IV. 2015.

R. Ranade, “Advanced Cementitious Composite Development for Resilient and Sustainable Infrastructure,” p. 419, 2014.

R. Muigai, P. Moyo, and M. Alexander, “Durability design of reinforced concrete structures: A comparison of the use of durability indexes in the deemed-to-satisfy approach and the full-probabilistic approach,” Mater. Struct. Constr., vol. 45, no. 8, pp. 1233–1244, 2012, doi: 10.1617/s11527-012-9829-y.

R. Zhang, A. Castel, and R. François, “Cement and Concrete Research Concrete cover cracking with reinforcement corrosion of RC beam during chloride-induced corrosion process,” Cem. Concr. Res., vol. 40, no. 3, pp. 415–425, 2010, doi: 10.1016/j.cemconres.2009.09.026.

Y. Yuan, Y. Ji, and S. P. Shah, “Comparison of two accelerated corrosion techniques for concrete structures,” ACI Struct. J., vol. 104, no. 3, pp. 344–347, 2007.

SNI 2847 : 2013, “Persyaratan Beton Struktural untuk Bangunan Gedung,” Bandung Badan Stand. Indones., pp. 1–265, 2013.

B. Wang, H. Peng, and J. R. Zhang, “Behavior of pre-cracked reinforced concrete beam strengthened with prestressed CFRP plate,” Appl. Mech. Mater., vol. 351–352, pp. 1397–1403, 2013, doi: 10.4028/www.scientific.net/AMM.351-352.1397.

Y. Zhu, H. Zhang, Z. Zhang, B. Dong, and J. Liao, “Monitoring the cracking behavior of engineered cementitious composites (ECC) and plain mortar by electrochemical impedance measurement,” Constr. Build. Mater., vol. 209, pp. 195–201, 2019, doi: 10.1016/j.conbuildmat.2019.03.132.

M. Maalej and V. C. Li, “Flexural/tensile-strength ratio in engineered cementitious composites,” Journal of Materials in Civil Engineering, vol. 6, no. 4. pp. 513–528, 1994, doi: 10.1061/(ASCE)0899-1561(1994)6:4(513).

M. Maalej, S. F. U. Ahmed, and P. Paramasivam, “Corrosion durability and structural response of functionally-graded concrete beams,” J. Adv. Concr. Technol., vol. 1, no. 3, pp. 307–316, 2003, doi: 10.3151/jact.1.307.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Prosiding Seminar Teknologi Perencanaan, Perancangan, Lingkungan dan Infrastruktur

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.