Teknik Pembesaran Citra Progresif untuk Klasifikasi Tipe Penyakit Daun Padi pada Jaringan Syaraf Tiruan VGG16
Abstract
Keywords
Full Text:
PDFReferences
M. I. Vadilaksono, Y. Syaukat, and W. Widyastutik, “Harmonization of Rice Production Policy and Rice Trade Policy in Indonesia,” J. Manaj. Dan Agribisnis, Mar. 2023, doi: 10.17358/jma.20.1.154.
Noviyanto Rahmadi, “Harga Beras Terus Melonjak Naik di 268 Kabupaten/Kota.” [Online]. Available: https://ppid.samarindakota.go.id/berita/kabar-pemerintahan/harga-beras-terus-melonjak-naik-di-268-kabupatenkota
C. H. Bock, K.-S. Chiang, and E. M. Del Ponte, “Plant disease severity estimated visually: a century of research, best practices, and opportunities for improving methods and practices to maximize accuracy,” Trop. Plant Pathol., vol. 47, no. 1, pp. 25–42, Feb. 2022, doi: 10.1007/s40858-021-00439-z.
Z. LIU, J. HUANG, and R. TAO, “Characterizing and Estimating Fungal Disease Severity of Rice Brown Spot with Hyperspectral Reflectance Data,” Rice Sci., vol. 15, no. 3, pp. 232–242, 2008, doi: https://doi.org/10.1016/S1672-6308(08)60047-5.
B. S. Bari et al., “A real-time approach of diagnosing rice leaf disease using deep learning-based faster R-CNN framework,” PeerJ Comput. Sci., vol. 7, p. e432, Apr. 2021, doi: 10.7717/peerj-cs.432.
P. K. Sethy, N. K. Barpanda, A. K. Rath, and S. K. Behera, “Deep feature based rice leaf disease identification using support vector machine,” Comput. Electron. Agric., vol. 175, p. 105527, 2020, doi: https://doi.org/10.1016/j.compag.2020.105527.
Q. Yao, Z. Guan, Y. Zhou, J. Tang, Y. Hu, and B. Yang, “Application of Support Vector Machine for Detecting Rice Diseases Using Shape and Color Texture Features,” in 2009 International Conference on Engineering Computation, 2009, pp. 79–83. doi: 10.1109/ICEC.2009.73.
W. Liang, H. Zhang, G. Zhang, and H. Cao, “Rice Blast Disease Recognition Using a Deep Convolutional Neural Network,” Sci. Rep., vol. 9, no. 1, p. 2869, Feb. 2019, doi: 10.1038/s41598-019-38966-0.
M. Gogoi and S. A. Begum, “Progressive 3-Layered Block Architecture for Image Classification,” Int. J. Adv. Comput. Sci. Appl., vol. 13, no. 3, 2022, doi: 10.14569/IJACSA.2022.0130360.
K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-Scale Image Recognition,” in International Conference on Learning Representations, 2015.
K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770–778. doi: 10.1109/CVPR.2016.90.
M. Tan and Q. Le, “EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks,” in Proceedings of the 36th International Conference on Machine Learning, K. Chaudhuri and R. Salakhutdinov, Eds., in Proceedings of Machine Learning Research, vol. 97. PMLR, Jun. 2019, pp. 6105–6114. [Online]. Available: https://proceedings.mlr.press/v97/tan19a.html
D. Jerrish et al., “Deep learning approaches for lyme disease detection: leveraging progressive resizing and self-supervised learning models,” Multimed. Tools Appl., vol. 83, pp. 1–38, Aug. 2023, doi: 10.1007/s11042-023-16306-9.
P. K. Sethy, “Rice Leaf Disease Image Samples.” Mendeley, 2020. doi: 10.17632/FWCJ7STB8R.1.
J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A Large-Scale Hierarchical Image Database,” in CVPR09, 2009.
L. Wright, “Ranger-Deep-Learning-Optimizer.” Github, 2019. [Online]. Available: https://github.com/lessw2020/Ranger-Deep-Learning-Optimizer
DOI: https://doi.org/10.31284/p.snestik.2024.5845
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 bayu adhi nugroho
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.