Perbandingan Kinerja Algoritma Klasifikasi Naive Bayes, k-Nearest Neighbor dan Logistic Regression pada Dataset Multiclass
Abstract
Penelitian ini membandingkan kinerja tiga algoritma klasifikasi: Naive Bayes, k- Nearest Neighbor, dan Logistic Regression pada dataset multiclass. Kinerja masing-masing algoritma dievaluasi menggunakan metrik seperti akurasi, presisi, recall, dan F1-skor. Hasil penelitian menunjukkan bahwa kinerja ketiga algoritma tersebut variatif tergantung pada dataset spesifik yang digunakan. Secara keseluruhan, algoritma regresi logistik yang memiliki kinerja terbaik, diikuti oleh k-Nearest Neighbor dan Naive Bayes. Hasil penelitian ini memberikan wawasan yang bermanfaat bagi para peneliti dan praktisi yang ingin memilih algoritma yang sesuai untuk masalah klasifikasi multiclass.
Keywords
Full Text:
PDFReferences
A. Robles-Guerrero, T. Saucedo-Anaya, E. González-Ramírez, and J. I. De la Rosa-Vargas, “Analysis of a multiclass classification problem by Lasso Logistic Regression and Singular Value Decomposition to identify sound patterns in queenless bee colonies,” Comput. Electron. Agric., vol. 159, no. February, pp. 69–74, 2019, doi: 10.1016/j.compag.2019.02.024.
N. Singh and P. Singh, “A novel Bagged Naïve Bayes-Decision Tree approach for multi-class classification problems,” J. Intell. Fuzzy Syst., vol. 36, no. 3, pp. 2261–2271, 2019, doi: 10.3233/JIFS-169937.
L. Mandal and N. D. Jana, “A comparative study of naive bayes and k-NN algorithm for multi-class drug molecule classification,” 2019 IEEE 16th India Counc. Int. Conf. INDICON 2019 - Symp. Proc., pp. 12–15, 2019, doi: 10.1109/INDICON47234.2019.9029095.
U. Bentkowska, J. G. Bazan, M. Mrukowicz, L. Zareba, and P. Molenda, “Multi-class classification problems for the k-NN algorithm in the case of missing values,” IEEE Int. Conf. Fuzzy Syst., vol. 2020-July, 2020, doi: 10.1109/FUZZ48607.2020.9177592.
M. Dreisig, M. H. Baccour, T. Schack, and E. Kasneci, “Driver Drowsiness Classification Based on Eye Blink and Head Movement Features Using the k-NN Algorithm,” 2020 IEEE Symp. Ser. Comput. Intell. SSCI 2020, pp. 889–896, 2020, doi: 10.1109/SSCI47803.2020.9308133.
“Bayes-Not So,” vol. 69, no. 3, pp. 385–398, 2014.
D. Coomans and D. L. Massart, “Alternative k-nearest neighbour rules in supervised pattern recognition,” Anal. Chim. Acta, vol. 136, pp. 15–27, 1982, doi: 10.1016/s0003-2670(01)95359-0.
Q. Mary, “Single-Label Multi-Class Image Classification by Deep Logistic Regression,” no. 2.
S. H. Walker and D. B. Duncan, “Estimation of the probability of an event as a function of several independent variables.,” Biometrika, vol. 54, no. 1, pp. 167–179, 1967, doi: 10.1093/biomet/54.1-2.167.
DOI: https://doi.org/10.31284/p.snestik.2023.4157
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Dian Puspita Hapsari
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.