Penentuan Keakuratan Kelompok Data Gambar pada Proses Segmentasi Menggunakan Algoritma Random Forest
Abstract
Abstrak. Sebagian besar metode segmentasi tradisional didasarkan pada intensitas dan hubungan spasial piksel, atau model terbatas yang ditemukan melalui pengoptimalan. Meskipun demikian, manusia menggunakan lebih banyak pengetahuan saat melakukan segmentasi manual. Oleh karena itu, dalam beberapa tahun terakhir, metode pembelajaran mesin yang dapat dilatih telah muncul sebagai alat yang ampuh untuk menyertakan sebagian dari pengetahuan tersebut dalam proses segmentasi dan meningkatkan akurasi wilayah berlabel. Pada paper ini dilakukan analisis untuk melihat seberapa akurat segmentasi gambar dengan menggunakan algoritma random forest. Dalam makalah ini akan diulas tentang hasil perbandingan kinerja algoritma random forest dengan algoritma J48, Naïve bayes, dan Logistic regression. Hasil perbandingan dari beberapa algoritma tersebut Random Forest memiliki keakuratan tertinggi 97.7%.
Keywords
Full Text:
PDFReferences
Z. Li et al., “PIxel-Level Segmentation of Bladder Tumors on MR Images Using a Random Forest Classifier,” Technol. Cancer Res. Treat., vol. 21, no. 169, pp. 1–9, 2022, doi: 10.1177/15330338221086395.
A. Subudhi, M. Dash, and S. Sabut, “Automated segmentation and classification of brain stroke using expectation-maximization and random forest classifier,” Biocybern. Biomed. Eng., vol. 40, no. 1, pp. 277–289, 2020, doi: 10.1016/j.bbe.2019.04.004.
T. Yang, J. Song, and L. Li, “A deep learning model integrating SK-TPCNN and random forests for brain tumor segmentation in MRI,” Biocybern. Biomed. Eng., vol. 39, no. 3, pp. 613–623, 2019, doi: 10.1016/j.bbe.2019.06.003.
Y. Wu and S. Misra, “Intelligent Image Segmentation for Organic-Rich Shales Using Random Forest, Wavelet Transform, and Hessian Matrix,” IEEE Geosci. Remote Sens. Lett., vol. 17, no. 7, pp. 1144–1147, 2020, doi: 10.1109/LGRS.2019.2943849.
V. R. Balaji, S. T. Suganthi, R. Rajadevi, V. Krishna Kumar, B. Saravana Balaji, and S. Pandiyan, “Skin disease detection and segmentation using dynamic graph cut algorithm and classification through Naive Bayes classifier,” Meas. J. Int. Meas. Confed., vol. 163, p. 107922, 2020, doi: 10.1016/j.measurement.2020.107922.
Z. Zhang and Y. Han, “Detection of Ovarian Tumors in Obstetric Ultrasound Imaging Using Logistic Regression Classifier with an Advanced Machine Learning Approach,” IEEE Access, vol. 8, pp. 44999–45008, 2020, doi: 10.1109/ACCESS.2020.2977962.
N. N. et al. . Nora Naik et al., “Detection and Classification of Brain Tumor Using Naïve Bayes and J48,” Int. J. Comput. Sci. Eng. Inf. Technol. Res., vol. 9, no. 2, pp. 19–28, 2019, doi: 10.24247/ijcseitrdec20194.
A. Murugan, S. A. H. Nair, and K. P. S. Kumar, “Detection of Skin Cancer Using SVM, Random Forest and kNN Classifiers,” J. Med. Syst., vol. 43, no. 8, 2019, doi: 10.1007/s10916-019-1400-8.
T. K. Ho, “Random decision forests,” Proc. Int. Conf. Doc. Anal. Recognition, ICDAR, vol. 1, pp. 278–282, 1995, doi: 10.1109/ICDAR.1995.598994.
T. Ho, Kam, “The Random Subspace Method for Constructing Decision Forests,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no. 8, pp. 832–844, 1998, [Online]. Available: %3CGo%0Ato
W. Deng, Z. Huang, J. Zhang, and J. Xu, “A Data Mining Based System for Transaction Fraud Detection,” 2021 IEEE Int. Conf. Consum. Electron. Comput. Eng. ICCECE 2021, pp. 542–545, 2021, doi: 10.1109/ICCECE51280.2021.9342376.
P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized trees,” Mach. Learn., vol. 63, no. 1, pp. 3–42, 2006, doi: 10.1007/s10994-006-6226-1.
T. K. Ho, “A data complexity analysis of comparative advantages of decision forest constructors,” Pattern Anal. Appl., vol. 5, no. 2, pp. 102–112, 2002, doi: 10.1007/s100440200009.
S. Wintner, “Dietterich TG: An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees,” En.Scientificcommons.Org, pp. 139–157, 2000, [Online]. Available: http://en.scientificcommons.org/42637098%5Cnuuid/7906280C-AEF8-405A-9A94-6BAA1DDAED1E
DOI: https://doi.org/10.31284/p.snestik.2023.4156
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Dian Puspita Hapsari
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.