Sistem Rekomendasi dalam Bidang Edukasi: Studi Literatur

Siti Muslimah Kusuma Haqqu Nurakhmadyavi, Intan Hervianda Putri, Erwin Eko Wahyudi

Abstract


Sistem rekomendasi telah banyak digunakan untuk membantu siswa menentukan sumber pembelajaran yang tepat. Pada paper ini dilakukan studi literatur mengenai beberapa metode yang dapat digunakan dalam membangun sistem rekomendasi untuk keperluan edukasi. Studi literatur ini bertujuan mendapatkan insight untuk digunakan pada penelitian mendatang. Berdasarkan hasil pencarian, terdapat metode association rule mining, sequential pattern mining, graf, dan metode-metode rekomendasi lainnya untuk memberikan rekomendasi pada siswa. Penelitian mendatang akan mengembangkan metode association rule mining dengan beberapa metrik untuk menentukan minimum support dan minimum confidence, skip Markov model dengan teknik smoothing, atau menggabungkan sequential pattern mining dengan collaborative filtering


Keywords


studi literatur; sistem rekomendasi; teknologi pendidikan; sumber pembelajaran

Full Text:

PDF

References


F. Ricci, L. Rokach, and B. Shapira, Eds., Recommender Systems Handbook, 2nd ed. 2015. New York, NY: Springer US : Imprint: Springer, 2015. doi: 10.1007/978-1-4899-7637-6.

F. Fauzan, D. Nurjanah, and R. Rismala, “Apriori Association Rule for Course Recommender System,” Indones. J. Comput. Indo-JC, vol. 5, no. 2, pp. 1–16, Sep. 2020, doi: 10.21108/indojc.2020.5.2.434.

R. Obeidat, R. Duwairi, and A. Al-Aiad, “A Collaborative Recommendation System for Online Courses Recommendations,” in 2019 International Conference on Deep Learning and Machine Learning in Emerging Applications (Deep-ML), Istanbul, Turkey, Aug. 2019, pp. 49–54. doi: 10.1109/Deep-ML.2019.00018.

K. Dahdouh, A. Dakkak, L. Ouhdir, and A. Ibriz, “Large‑scale e‑learning recommender system based on Spark and Hadoop,” J. Big Data, vol. 6, no. 2, 2019, doi: https://doi.org/10.1186/s40537‑019‑0169‑4.

HarvardX, “HarvardX Person-Course Academic Year 2013 De-Identified dataset, version 2.0.” Harvard Dataverse, 2014. doi: 10.7910/DVN/26147.

Canvas Network, “Canvas Network Person-Course (1/2014 - 9/2015) De-Identified Open Dataset.” Harvard Dataverse, 2016. doi: 10.7910/DVN/1XORAL.

C. C. Aggarwal, Recommender Systems: The Textbook, 1st ed. 2016. Cham: Springer International Publishing : Imprint: Springer, 2016. doi: 10.1007/978-3-319-29659-3.

J. K. Tarus, Z. Niu, and D. Kalui, “A hybrid recommender system for e-learning based on context awareness and sequential pattern mining,” Soft Comput., vol. 22, no. 8, pp. 2449–2461, Apr. 2018, doi: 10.1007/s00500-017-2720-6.

C. Bridges, J. Jared, J. Weissmann, A. Montanez-Garay, J. Spencer, and C. G. Brinton, “Course recommendation as graphical analysis,” in 2018 52nd Annual Conference on Information Sciences and Systems (CISS), Princeton, NJ, Mar. 2018, pp. 1–6. doi: 10.1109/CISS.2018.8362325.

E. S. Khorasani, Z. Zhenge, and J. Champaign, “A Markov chain collaborative filtering model for course enrollment recommendations,” in 2016 IEEE International Conference on Big Data (Big Data), Washington DC,USA, Dec. 2016, pp. 3484–3490. doi: 10.1109/BigData.2016.7841011.

B. Sweatha, “Using smoothing techniques to improve the performance of Hidden Markov’s Model,” Thesis, University of Nevada, Las Vegas, 2011. [Online]. Available: http://dx.doi.org/10.34917/2349611

D. F. Murad, Y. Heryadi, S. M. Isa, and W. Budiharto, “Personalization of study material based on predicted final grades using multi-criteria user-collaborative filtering recommender system,” Educ. Inf. Technol., vol. 25, no. 6, pp. 5655–5668, Nov. 2020, doi: 10.1007/s10639-020-10238-9.

D. Yanhui, W. Dequan, Z. Yongxin, and L. Lin, “A Group Recommender System for Online Course Study,” in 2015 7th International Conference on Information Technology in Medicine and Education (ITME), Huangshan, China, Nov. 2015, pp. 318–320. doi: 10.1109/ITME.2015.99.

Y. Li and H. Li, “MOOC-FRS: A new fusion recommender system for MOOCs,” in 2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chongqing, China, Mar. 2017, pp. 1481–1488. doi: 10.1109/IAEAC.2017.8054260.

R. Verma and Anika, “Applying Predictive Analytics in Elective Course Recommender System while preserving Student Course Preferences,” in 2018 IEEE 6th International Conference on MOOCs, Innovation and Technology in Education (MITE), Hyderabad, India, Nov. 2018, pp. 52–59. doi: 10.1109/MITE.2018.8747128




DOI: https://doi.org/10.31284/p.snestik.2022.2634

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Siti Muslimah Kusuma Haqqu Nurakhmadyavi, Intan Hervianda Putri, Erwin Eko Wahyudi

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.