Klasifikasi Penyakit Daun Apel Menggunakan Arsitektur CNN dengan Transfer Learning
Abstract
Salah satu hasil produk pertanian subtropis yang dapat ditanam di Indonesia adalah apel. Dalam budidaya apel, pengendalian hama dan penyakit merupakan salah satu faktor kunci dalam perkembangan tanaman apel, karena dapat mempengaruhi hasil apel. Salah satu teknologi yang berkembang pesat dalam pendeteksian atau diagnosis penyakit tanaman dapat menyederhanakan proses klasifikasi penyakit tanaman khususnya penyakit daun apel dan membantu dalam diagnose dini adalah deep learning. Terdapat salah satu arsitektur deep learning yang dapat digunakan dalam klasifikasi citra, salah satunya Convolutional Neural Networks (CNN). Arsitektur CNN dengan transfer learning yang menghasilkan nilai akurasi yang masih bisa diterima, waktu yang diperlukan pendek pada klasifikasi penyakit daun apel. Hasil dari klasifikasi penyakit daun apel dengan VGG16 mendapatkan akurasi sebesar 99,31 %.
Full Text:
PDFReferences
Badan Pusat Statistik, “Badan Pusat Statistik,” 2020. [Online]. Available: https://www.bps.go.id/linkTableDinamis/view/id/960. [Accessed: 20-Jul-2022].
S. K, V. R. P, R. P, P. K. M, and P. S, “Apple Leaf Disease Detection using Deep Learning,” in 2022 6th International Conference on Computing Methodologies and Communication (ICCMC), 2022, pp. 1063–1067.
M. R. D. Septian, A. A. A. Paliwang, M. Cahyanti, and E. R. Swedia, “Penyakit Tanaman Apel Dari Citra Daun Dengan Convolutional Neural Network,” Sebatik, vol. 24, no. 2, pp. 207–212, 2020.
X. Yuan, C. Yu, B. Liu, H. Sun, and X. Zhu, “CGAN-IRB: A novel data augmentation method for apple leaf diseases,” Proc. - 2021 IEEE 45th Annu. Comput. Software, Appl. Conf. COMPSAC 20pp. 192–200, Jul. 2021.
Y. Nagaraju, Venkatesh, S. Swetha, and S. Stalin, “Apple and Grape Leaf Diseases Classification using Transfer Learning via Fine-tuned Classifier,” in 2020 IEEE International Conference on Machine Learning and Applied Network Technologies (ICMLANT), 2020, pp. 1–6.
X. Li and L. Rai, “Apple Leaf Disease Identification and Classification using ResNet Models,” in 2020 IEEE 3rd International Conference on Electronic Information and Communication Technology (ICEICT), 2020, pp. 738–742.
V. V. Srinidhi, A. Sahay, and K. Deeba, “Plant Pathology Disease Detection in Apple Leaves Using Deep Convolutional Neural Networks : Apple Leaves Disease Detection using EfficientNet and DenseNet,” Proc. - 5th Int. Conf. Comput. Methodol. Commun. ICCMC 2021, pp. 1119–1127, Apr. 2021.
K. P. Akshai and J. Anitha, “Plant disease classification using deep learning,” 2021 3rd Int. Conf. Signal Process. Commun. ICPSC 2021, pp. 407–411, May 2021.
Li, Zewen, Fan Liu, Wenjie Yang, Shouheng Peng, and Jun Zhou. "A survey of convolutional neural networks: analysis, applications, and prospects." IEEE transactions on neural networks and learning systems 33, no. 12. 2021: 6999-7019.
Ketkar, Nikhil, Jojo Moolayil, Nikhil Ketkar, and Jojo Moolayil. "Convolutional neural networks." Deep learning with Python: learn best practices of deep learning models with PyTorch. 2021: 197-242.
Khan, Asifullah, Anabia Sohail, Umme Zahoora, and Aqsa Saeed Qureshi. "A survey of the recent architectures of deep convolutional neural networks." Artificial intelligence review 53 2020: 5455-5516.
Ghosh, Anirudha, Abu Sufian, Farhana Sultana, Amlan Chakrabarti, and Debashis De. "Fundamental concepts of convolutional neural network." Recent trends and advances in artificial intelligence and Internet of Things. 2020: 519-567.
Zhu, Feng, Ruihao Gong, Fengwei Yu, Xianglong Liu, Yanfei Wang, Zhelong Li, Xiuqi Yang, and Junjie Yan. "Towards unified int8 training for convolutional neural network." In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1969-1979. 2020.
Soffer, Shelly, Avi Ben-Cohen, Orit Shimon, Michal Marianne Amitai, Hayit Greenspan, and Eyal Klang. "Convolutional neural networks for radiologic images: a radiologist’s guide." Radiology 290, no. 3. 2019: 590-606.
Dhillon, Anamika, and Gyanendra K. Verma. "Convolutional neural network: a review of models, methodologies and applications to object detection." Progress in Artificial Intelligence 9, no. 2. 2020: 85-112.
Oh, Seunghyeok, Jaeho Choi, and Joongheon Kim. "A tutorial on quantum convolutional neural networks (QCNN)." In 2020 International Conference on Information and Communication Technology Convergence (ICTC), pp. 236-239. IEEE, 2020.
Refbacks
- There are currently no refbacks.