Analisis Sentimen Tanggapan Masyarakat terhadap Layanan Kesehatan di Kota Surabaya dengan RoBERTa
Abstract
Keywords
Full Text:
PDFReferences
Surya.co.id, “Berita dan Video Terkini,” Surya.co.id. Accessed: Jun. 20, 2024. [Online]. Available: https://surabaya.tribunnews.com/
A. Hakim, “Mewujudkan Pemerataan Layanan Kesehatan di Surabaya Berbasis Kawasan,” ANTARA Kantor Berita Indonesia. Accessed: Jun. 07, 2024. [Online]. Available: https://www.antaranews.com/berita/3760326/mewujudkan -pemerataan-layanan-kesehatan-di-surabaya-berbasis- kawasan.
F. A. Safira and N. Holifah, “Kualitas Pelayanan Kesehatan di Masa Pandemi di Kota Surabaya,” JISP (Jurnal Inovasi Sektor Publik), vol. 1, no. 3, pp. 29–45, May 2022, doi: 10.38156/jisp.v1i3.92.
Y. Hairina, “Sadari Etika Curhat di Media Sosial,” Universitas Islam Negeri Antasari Banjarmasin. Accessed: Jun. 08, 2024. [Online]. Available: https://www.uin- antasari.ac.id/sadari-etika-curhat-di-media-sosial/
D. Angelia, “Bagaimana Kecenderungan Masyarakat Indonesia Menggunakan Media Sosial?,” Good Stats. Accessed: Jun. 10, 2024. [Online]. Available: https://goodstats.id/article/bagaimana-kecenderungan-masyarakat-indonesia-menggunakan-media-sosial-SPUTW
Anonym, “Cek Layanan Kesehatan di Puskesmas, Walikota Eri Cahyadi: Sistem Antrean Harus Dibenahi!,” Pemerintah Kota Surabaya. Accessed: Jun. 10, 2024. [Online]. Available: https://www.surabaya.go.id/id/berita/11195/cek-layanan-kesehatan-di-puskesmas-wali-kota-eri-cahyadi-sistem-antrean-harus-dibenahi
P. Ghasiya and K. Okamura, “Investigating COVID-19 News Across Four Nations: A Topic Modeling and Sentiment Analysis Approach,” IEEE Access, vol. 9, pp. 36645–36656, 2021, doi: 10.1109/ACCESS.2021.3062875.
M. Wankhade, A. C. S. Rao, and C. Kulkarni, “A Survey on Sentiment Analysis Methods, Applications, and Challenges,” Artif Intell Rev, vol. 55, no. 7, pp. 5731–5780, Oct. 2022, doi: 10.1007/s10462-022-10144-1.
I. Jolliffe, “A 50-Year Personal Journey Through Time with Principal Component Analysis,” J Multivar Anal, vol. 188, Mar. 2022, doi: 10.1016/j.jmva.2021.104820.
M. Arief and M. B. M. Deris, “Text Preprocessing Impact for Sentiment Classification in Product Review,” in 6th International Conference on Informatics and Computing, Institute of Electrical and Electronics Engineers Inc., 2021. doi: 10.1109/ICIC54025.2021.9632884.
L. Hickman, S. Thapa, L. Tay, M. Cao, and P. Srinivasan, “Text Preprocessing for Text Mining in Organizational Research: Review and Recommendations,” Organ Res Methods, vol. 25, no. 1, pp. 114–146, Jan. 2022, doi: 10.1177/1094428120971683.
Y. Hong and X. Shao, “Emotional Analysis of Clothing Product Reviews Based on Machine Learning,” in 2021 3rd International Conference on Applied Machine Learning (ICAML), IEEE, Jul. 2021, pp. 398–401. doi: 10.1109/ICAML54311.2021.00090.
S. Kausar, X. Huahu, W. Ahmad, and M. Y. Shabir, “A Sentiment Polarity Categorization Technique for Online Product Reviews,” IEEE Access, vol. 8, pp. 3594–3605, 2020, doi: 10.1109/ACCESS.2019.2963020.
P. Mukherjee, Y. Badr, S. Doppalapudi, S. M. Srinivasan, R. S. Sangwan, and R. Sharma, “Effect of Negation in Sentences on Sentiment Analysis and Polarity Detection,” in Procedia Computer Science, Elsevier B.V., 2021, pp. 370–379. doi: 10.1016/j.procs.2021.05.038.
A. Onan, “Sentiment Analysis on Product Reviews Based on Weighted Word Embeddings and Deep Neural Networks,” Concurr Comput, vol. 33, no. 23, Dec. 2021, doi: 10.1002/cpe.5909.
E. Araslanov, E. Komotskiy, and E. Agbozo, “Assessing the Impact of Text Preprocessing in Sentiment Analysis of Short Social Network Messages in the Russian Language,” in International Conference on Data Analytics for Business and Industry: Way Towards a Sustainable Economy, ICDABI, Institute of Electrical and Electronics Engineers Inc., Oct. 2020. doi: 10.1109/ICDABI51230.2020.9325654.
Arpita, P. Kumar, and K. Garg, “Data Cleaning of Raw Tweets for Sentiment Analysis,” in International Conference on Computing, Analytics and Networks, 2020, pp. 273–276. doi: 10.1109/Indo-TaiwanICAN48429.2020.9181326.
F. Firmansyah et al., “Comparing Sentiment Analysis of Indonesian Presidential Election 2019 with Support Vector Machine and K-Nearest Neighbor Algorithm,” in International Conference on Computing, Engineering, and Design, Institute of Electrical and Electronics Engineers Inc., Oct. 2020. doi: 10.1109/ICCED51276.2020.9415767.
Y. F. Faidha, G. F. Shidik, and A. Z. Fanani, “Study Comparison Stemmer to Optimize Text Preprocessing in Sentiment Analysis Indonesian E-Commerce Reviews,” in International Conference on Data Analytics for Business and Industry, Institute of Electrical and Electronics Engineers Inc., 2021, pp. 135–139. doi: 10.1109/ICDABI53623.2021.9655867.
M. Noor Fauzy and Kusrini, “Chatbot menggunakan Metode Fuzzy String Matching sebagai Virtual Assistant pada Pusat Layanan Informasi Akademik,” Jurnal INFORMA Politeknik Indonusa Surakarta, vol. 5, pp. 2442–7942, 2019.
H. Kyung Yu and J. Gon Kim, “Indoor Positioning by Weighted Fuzzy Matching in Lifi Based Hospital Ward Environment,” J Phys Conf Ser, vol. 1487, no. 1, Apr. 2020, doi: 10.1088/1742-6596/1487/1/012010.
M. R. Romadhon and F. Kurniawan, “A Comparison of Naive Bayes Methods, Logistic Regression and KNN for Predicting Healing of Covid-19 Patients in Indonesia,” in East Indonesia Conference on Computer and Information Technology, Institute of Electrical and Electronics Engineers Inc., Apr. 2021, pp. 41–44. doi: 10.1109/EIConCIT50028.2021.9431845.
A. Barushka and P. Hajek, “The Effect of Text Preprocessing Strategies on Detecting Fake Consumer Reviews,” in ACM International Conference Proceeding Series, Association for Computing Machinery, Nov. 2019, pp. 13–17. doi: 10.1145/3383902.3383908.
U. Naseem, I. Razzak, and P. W. Eklund, “A Survey of Pre-Processing Techniques to Improve Short-Text Quality: a Case Study on Hate Speech Detection on Twitter,” Multimed Tools Appl, vol. 80, no. 28–29, pp. 35239–35266, Nov. 2020, doi: 10.1007/s11042-020-10082-6.
E. Kauffmann, J. Peral, D. Gil, A. Ferrández, R. Sellers, and H. Mora, “A Framework for Big Data Analytics in Commercial Social Networks: a Case Study on Sentiment Analysis and Fake Review Detection for Marketing Decision-Making,” Industrial Marketing Management, 2019, doi: 10.1016/j.indmarman.2019.08.003.
M. Birjali, M. Kasri, and A. Beni-Hssane, “A Comprehensive Survey on Sentiment Analysis: Approaches, Challenges and Trends,” Knowl Based Syst, vol. 226, Aug. 2021, doi: 10.1016/j.knosys.2021.107134.
E. Sutoyo, A. P. Rifai, A. Risnumawan, and M. Saputra, “A Comparison of Text Weighting Schemes on Sentiment Analysis of Government Policies: a Case Study of Replacement of National Examinations,” Multimed Tools Appl, vol. 81, no. 5, pp. 6413–6431, Feb. 2022, doi: 10.1007/s11042-022-11900-9.
T. Hevianto Saputro and A. Hermawan, “The Accuracy Improvement of Text Mining Classification on Hospital Review through The Alteration in The Preprocessing Stage,” 2021. doi: https://doi.org/10.24203/ijcit.v10i4.138.
M. K. Delimayanti, R. Sari, M. Laya, M. R. Faisal, Pahrul, and R. F. Naryanto, “The Effect of Pre-Processing on the Classification of Twitter’s Flood Disaster Messages using Support Vector Machine Algorithm,” in Proceedings of ICAE 2020 - 3rd International Conference on Applied Engineering, Institute of Electrical and Electronics Engineers Inc., Oct. 2020. doi: 10.1109/ICAE50557.2020.9350387.
X. Wang, S. Xue, J. Liu, J. Zhang, J. Wang, and J. Zhou, “Sentiment Classification Based on RoBERTa and Data Augmentation,” in 2023 IEEE 9th International Conference on Cloud Computing and Intelligent Systems (CCIS), IEEE, Aug. 2023, pp. 260–264. doi: 10.1109/CCIS59572.2023.10263002.
K. L. Tan, C. P. Lee, and K. M. Lim, “RoBERTa-GRU: A Hybrid Deep Learning Model for Enhanced Sentiment Analysis,” Applied Sciences, vol. 13, no. 6, p. 3915, Mar. 2023, doi: 10.3390/app13063915.
I. Prasetyo, “Teknik Analisis Data dalam Research and Development,” Yogyakarta, 2020. Accessed: Jun. 10, 2024. [Online]. Available: https://d1wqtxts1xzle7.cloudfront.net/48117245/teknik-analisis-data-dalam-research-and-development-libre.pdf?1471437999=&response-content-disposition=inline%3B+filename%3DTeknik_analisis_data_dalam_research_and.pdf&Expires=1734362609&Signature=PAAoiF0fmxfyuDmq-fc2LxPuGc6PMU-sp4wB720k107VvNpHV3ZIaoRVT2zDtJpYsjGm1DpvDKEMLawSPwfe1-4CSVaD8QxqagL~BaTPMGJg8qNWlnHO5ajdwU3d4BFPaph1beI1DHmQoK3~x4x-i9kvJ7ye5kLUN93pBy6NxUFQNOcJ4IWjDLOK8u5oKn95TnK-Lu4rlO4tKnyN9NwIcuPJl9FofFBP6FAc5-YkGFTYpCBYspwIypqrppC0JjMCZBuuOwVDE8YK-q1pAlcb5bQk9I3OmICSnpRNsZczuP46g60TrqYoSzW3e3CjJlmlmpxiBVwwQ1COq60g~xk2WA__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
M. E. Khoibur et al., Sains Data: Strategi, Teknik, dan Model Analisis Data. Bandung: Kaizen Media Publishing, 2023.
Y. Asri, D. Kuswardani, L. F. M. Horhoruw, and S. A. Ramadhana, Machine Learning & Deep Learning: Analisis Sentimen Menggunakan Ulasan Pengguna Aplikasi, 1st ed. Ponorogo: Uwais Inspirasi Indonesia, 2024.
M. Riyyan and H. Firdaus, “Perbandingan Algoritme Naive Bayes dan KNN terhadap Data Penerimaan Beasiswa (Studi Kasus Lembaga Beasiswa Baznas Jabar),” Jurnal Informatika dan Rekayasa Elektronik, vol. 5, no. 1, pp. 1–10, Apr. 2022, doi: 10.36595/jire.v5i1.547.
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Wahyu Adinda Nur Ashifa, Stefanus Silverio Susanto, Ananda Fauziah, Vivine Nurcahyawati
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.