Penerapan Naive Bayes Untuk Klasifikasi Penyakit Endokrin Pada Pasien Lansia
Abstract
The application of the Naïve Bayes algorithm has shown great potential in the classification of endocrine diseases in elderly patients. This study aims to develop a classification model using the algorithm, utilizing diabetes-related data obtained from public datasets. The process involves data collection, preprocessing, model training, and evaluation using Orange software. The results show that Naïve Bayes' algorithm is able to achieve high accuracy in data classification. The implementation of this model is expected to be a medical decision support system for faster and more accurate diagnosis, as well as improve the efficiency of health services for elderly patients. The advantages of this method lie in its ease of use, time efficiency, and intuitive visualization capabilities, making it an effective tool in medical data analysis. The main advantages of this approach include ease of implementation, time efficiency in data analysis, and the ability to visualize intuitively through a software interface. Thus, this research not only contributes to the development of health technology but also opens up opportunities for further integration with more complex AI-based health information systems. The adoption of this model is expected to be able to encourage the improvement of the quality of health services in the future.
Keywords
Full Text:
PDFReferences
G. Kalaivani and P. Mayilvahanan, “Air Quality Prediction and Monitoring using Machine Learning Algorithm based IoT sensor- A researcher’s perspective,” Proc. 6th Int. Conf. Commun. Electron. Syst. ICCES 2021, 2021, doi: 10.1109/ICCES51350.2021.9489153.
S. Abidin, “Deteksi Wajah Menggunakan Metode Haar Cascade Classifier Berbasis Webcam Pada Matlab,” J. Teknol. Elekterika, vol. 15, no. 1, p. 21, 2018, doi: 10.31963/elekterika.v15i1.2102.
P. Rosyani and O. Hariansyah, “Pengenalan Citra Bunga Menggunakan Segmentasi Otsu Threshold dan Naïve Bayes,” pp. 1–7, 2020, doi: 10.30864/jsi.v15i1.304.
K. Sulastri, “Klasifikasi Naïve Bayes pada Analisis Sentimen atas Penolakan Dibukanya Larangan Ekspor Benih Lobster,” KERNEL J. Ris. Inov. Bid. Inform. dan Pendidik. Inform., vol. 1, no. 2, pp. 68–75, 2020, doi: 10.31284/j.kernel.2020.v1i2.1501.
F. Fitriani and R. Fadilla, “Pengaruh Senam Diabetes Terhadap Penurunan Kadar,” J. Kesehat. dan Pengemb., vol. 10, no. 19, pp. 114–122, 2020.
Didin Wahyu Utomo, Suprapto, and Nurul Hidayat, “Pemodelan Sistem Pakar Diagnosis Penyakit pada Sistem Endokrin Manusia dengan Metode Dempster-Shafer,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 1, no. 9, pp. 893–903, 2019.
Perani Rosyani and Fabian Syawali, “Application of Advanced Class Determination System Using K-Means Clustering Method (Case Study: SMK Al-Badar Balaraja),” Int. J. Integr. Sci., vol. 2, no. 10, pp. 1557–1570, 2023, doi: 10.55927/ijis.v2i10.6347.
DOI: https://doi.org/10.31284/j.kernel.2024.v5i2.7312
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 SUSANNA DWI YULIANTI KUSUMA, HIDAYATULLAH AL ISLAMI

This work is licensed under a Creative Commons Attribution 4.0 International License.
Diindeks oleh:
