Penerapan Metode K-Means Clustering Untuk Analisa Penjualan Komoditas Toko Tani Indonesia
Abstract
Thisreportdescribesthegroupingofagriculturalcommodities.AgriculturalCommoditiesaretheresults of farming activities that can be traded, stored and exchanged. In carrying out testing ofthis algorithm, the data used is goods data at the Indonesian Farmer Center shop. In thisapplication, clustering is used using the K-means algorithm. From the data that was processedwith data samples taken at the Indonesian farmer's shop center, three types of data groups wereproduced. Namely low sales data, medium sales data, and high sales data. So that with this datagrouping, the Indonesian farm shop can find out the types of goods that are selling well andwhichare not. Sothatthe goods in the warehousedo notaccumulate.
Full Text:
PDFReferences
M. I. Riyadh, “ANALISIS NILAI TUKAR PETANI KOMODITAS TANAMAN PANGAN DI SUMATERA UTARA”.
C. Chairunnisa, I. Ernawati, and M. M. Santoni, “Klasifikasi Sentimen Ulasan Pengguna Aplikasi PeduliLindungi di Google Play Menggunakan Algoritma Support Vector Machine dengan Seleksi Fitur Chi-Square,” Inform. J. Ilmu Komput., vol. 18, no. 1, p. 69, Aug. 2022, doi: 10.52958/iftk.v17i4.4594.
A. -, F. Marisa, and D. Purnomo, “Penerapan Algoritma Apriori Terhadap Data Penjualan di Toko Gudang BM,” JOINTECS J. Inf. Technol. Comput. Sci., vol. 1, no. 1, Aug. 2016, doi: 10.31328/jointecs.v1i1.408.
Y. Irawan, “PENERAPAN DATA MINING UNTUK EVALUASI DATA PENJUALAN MENGGUNAKAN METODE CLUSTERING DAN ALGORITMA HIRARKI DIVISIVE,” vol. 04.
Yazeed Al Moaiad, “TECHNOLOGIES USED IN DATA MINING,” 2022, doi: 10.13140/RG.2.2.29881.44640.
W. J. (Thomas) Lee, I. Cheah, I. Phau, M. Teah, and B. A. Elenein, “Conceptualising consumer regiocentrism: Examining consumers’ willingness to buy products from their own region,” J. Retail. Consum. Serv., vol. 32, pp. 78–85, Sep. 2016, doi: 10.1016/j.jretconser.2016.05.013.
P. Guruprasad, “OVERVIEW OF DIFFERENT CLUSTERING TECHNIQUES IN DATA MINING”.
N. Bakhshinejad, R. Soltani, U. T. Nguyen, and P. Messina, “A Survey of Machine Learning Based Anti-Money Laundering Solutions”.
M. Imron, U. Hasanah, and B. Humaidi, “Analysis of Data Mining Using K-Means Clustering Algorithm for Product Grouping,” IJIIS Int. J. Inform. Inf. Syst., vol. 3, no. 1, pp. 12–22, Mar. 2020, doi: 10.47738/ijiis.v3i1.3.
M. Kalra, N. Lal, and S. Qamar, “K-Mean Clustering Algorithm Approach for Data Mining of Heterogeneous Data,” in Information and Communication Technology for Sustainable Development, vol. 10, D. K. Mishra, M. K. Nayak, and A. Joshi, Eds. Singapore: Springer Singapore, 2018, pp. 61–70. doi: 10.1007/978-981-10-3920-1_7.
R. K. Hapsari, M. Miswanto, R. Rulaningtyas, and H. Suprajitno, “Identification of Diabetes Mellitus and High Cholesterol Based on Iris Image”.
A. Prawesti, T. Haryanto, and I. Effendi, “Sistem Pakar Identifikasi Varietas Ikan Mas (Cyprinus carpio) Berdasarkan Karakteristik Morfologi dan Tingkah Laku,” J. Ilmu Komput. Dan Agri-Inform., vol. 4, no. 1, p. 6, Jan. 2017, doi: 10.29244/jika.4.1.6-13.
DOI: https://doi.org/10.31284/j.kernel.2022.v3i2.4076
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Rahmatullah Wirya Adikusuma
This work is licensed under a Creative Commons Attribution 4.0 International License.
Diindeks oleh: