Model Fuzzy Logic pada Air Asam Tambang untuk Prediksi Pencemaran Sungai – Literature Review
Abstract
Banyak penelitian telah dilakukan untuk mencari model prediksi pencemaran air asam tambang pada sungai di berbagai bidang, sehingga perlu di-review kembali untuk membantu mengatasi proses pencemaran yang terjadi dalam perusahaan tambang. Review ini dilakukan dengan membandingkan hasil dari setiap model yang telah diuji dalam beberapa penelitian sebelumnya, menggunakan metode kuantitatif. Model yang dibandingkan dalam penelitian ini antara lain adalah Fuzzy Inference System (FIS) dan Fuzzy Inference System (FIS) Metode Mamdani. Hasil review ini menunjukkan bahwa model fuzzy logic memiliki beberapa kelebihan dibandingkan dengan metode lain. Metode fuzzy logic dapat memberikan hasil yang tepat berdasarkan perancangan, implementasi, dan hasil pengujian baik dari sistem pendukung keputusan kualitas air asam tambang pada sungai berupa model Tsukamoto maupun Mamdani, yang dapat menentukan apakah kualitas air tersebut memenuhi baku mutu, TR, TS, atau TB. Oleh karena itu, model fuzzy logic sangat direkomendasikan untuk digunakan dalam perhitungan prediksi pencemaran air asam tambang pada sungai.
Extensive research has been conducted to develop a predictive model for acid mine drainage pollution in rivers across various sectors, necessitating a comprehensive review to aid in addressing the pollution challenges faced by mining companies. This review involved a comparative analysis of the results from different models tested in previous studies, employing quantitative methods. The study compared the Fuzzy Inference System (FIS) model and the FIS Mamdani Method. The review concluded that the fuzzy logic model offers several advantages over other methods. The fuzzy logic method can yield results based on the design, implementation, and testing of the decision support system for acid mine drainage water quality in rivers, using both the Tsukamoto and Mamdani models. These models can ascertain whether the water quality meets the standards or is lightly, moderately, or heavily polluted. Therefore, the fuzzy logic model is recommended for predicting acid mine drainage pollution in rivers.
Keywords
Full Text:
PDFReferences
A. Paramadyastha, “Studi Penentuan Status Mutu Air dengan Metode Storet dan Metode Indek Pencemaran di Waduk Sutami,” Malang, 2011.
M. I. Apriliyani, H. Mustafidah, and A. Dan, “Fuzzy Inference System untuk Menentukan Tingkat Kompetensi Kepribadian Guru (Fuzzy Inference System to Determine the Personality Competency Level of Teachers),” Juita, vol. 2, p. 123, 2012, [Online]. Available: https://media.neliti.com/media/publications/136429-ID-fuzzy-inference-system-untuk-menentukan.pdf
L. K. R., V. Nirmala, and V. Nageshwaran, “River water quality analysis using fuzzy approach a case study of Chunnambar river, Pondicherry.,” Int. J. Adv. Eng. Technol., vol. 7.2, 2016.
F. Babaei Semirom, A. H. Hassan, A. Torabia, A. R. Karbass, and F. Hosseinzadeh Lotf, “Water quality index development using fuzzy logic: A case study of the Karoon River of Iran,” African J. Biotechnol., vol. 10, no. 50, pp. 10125–10133, 2011, doi: 10.5897/ajb11.1608.
D. C. mazenda galuh, Soebroto Andy Arief, “Implementasi Fuzzy Inference System ( Fis ) Metode Tsukamoto Pada Sistem Pendukung Keputusan,” J. Environ. Eng. Sustain. Technol., vol. 01, no. 02, pp. 92–103, 2014.
N. Anggraeni, G. Arifiana, and A. M. Abadi, “Klasifikasi Kualitas Air Sungai Winongo Menggunakan Fuzzy Inference System (FIS) Metode Mamdani,” Progr. Stud. Mat. FMIPA UNY, no. 2014, pp. 161–170, 2017.
J. M. Davila et al., “Application of a fuzzy logic based methodology to validate the hydrochemical characterization and determining seasonal influence of a watershed affected by acid mine drainage,” Int. J. Environ. Res. Public Health, vol. 18, no. 9, pp. 1–15, 2021, doi: 10.3390/ijerph18094693.
A. S. Khalid Waleed, P. D. Kusuma, and C. Setianingsih, “Monitoring and classification system of river water pollution conditions with fuzzy logic,” Proc. - 2019 IEEE Int. Conf. Ind. 4.0, Artif. Intell. Commun. Technol. IAICT 2019, pp. 112–117, 2019, doi: 10.1109/ICIAICT.2019.8784857.
W. Harianto, “Model Adaptif Neuro Fuzzy Inference System Berdasarkan Ph, Temperatur Dan Tss Untuk Prediksi Nilai Cod,” SMARTICS J., vol. 3, no. 1, pp. 12–16, 2017, doi: 10.21067/smartics.v3i1.1931.
T. M. Valente and C. L. Gomes, “Fuzzy modelling of acid mine drainage environments using geochemical, ecological and mineralogical indicators,” Environ. Geol., vol. 57, no. 3, pp. 653–663, 2009, doi: 10.1007/s00254-008-1344-7.
J. Aroba, J. A. Grande, J. M. Andújar, M. L. De La Torre, and J. C. Riquelme, “Application of fuzzy logic and data mining techniques as tools for qualitative interpretation of acid mine drainage processes,” Environ. Geol., vol. 53, no. 1, pp. 135–145, 2007, doi: 10.1007/s00254-006-0627-0.
E. Turban, J. E. Aronson, and T.-P. Liang, “Decision Support System and Intelligent System.” p. 936, 2010.
Hisan, N. K., Jasaputra, L. D., Bernaldo, P. A., Karlina, N. A. Y. P., & Arhananta, A. (2020). Hydrostructure of Groundwater Manifestation of Gedongsongo Geothermal Ungaran, Semarang, Central Java, Indonesia. Journal of Earth and Marine Technology (JEMT), 1(1), 31-39.
Sari, A. S., Bahagiarti, S., Suharsono, S., & Prasetyadi, C. (2020). Groundwater quality in Ponjong Karst, Gunungkidul Regency, Special Region of Yogyakarta. Journal of Earth and Marine Technology (JEMT), 1(1), 7-11.
Widiatmoko, F. R., Hadi, M. N., Kusnadi, D., Iswahyudi, S., & Fadlin, F. (2020). The conceptual model of Wae Sano Geothermal field based on geology and geochemistry data. Journal of Earth and Marine Technology (JEMT), 1(1), 56-63.
Reynaldi, M. (2021). Design of Drainage System Coal Mine at PT. Tebo Agung International Site Project, Semambu Village, Sumay District, Tebo Regency, Jambi. Journal of Earth and Marine Technology (JEMT), 1(2), 64-70.
Yuliani, A. R., Sari, M. M., & Suryawan, I. W. K. (2023). Carbon Footprint Assessment of LPG Gas Usage in Small Industries: A Case Study of Sami Laris Swalayan Shopping Center. Journal of Earth and Marine Technology (JEMT), 3(2), 98-103.
Widiatmoko, F. R. (2019). Pendekatan analisa geokimia dengan multivariate analysis untuk mengetahui tipe mata air panas: studi kasus lapangan panas bumi mapos, nusa tenggara timur. Jurnal IPTEK, 23(2), 71-78.
Mayasari, A., & Yulfiah, Y. (2023). Exploring the link between Atmospheric conditions and Acid rain prevalence: a 12-year study at Juanda International Airport, Sidoarjo, Indonesia. Journal of Earth and Marine Technology (JEMT), 3(2), 141-147.
DOI: https://doi.org/10.31284/j.semitan.j.2023.v2i1.5008
Refbacks
- There are currently no refbacks.