Indikasi Potensi Skandium Di Zona Limonit Blok Tapunopaka, Konawe Utara, Sulawesi Tenggara
Abstract
Skandium di dalam 27,22 juta ton sumberdaya terukur limonit di Blok Tapunopaka dengan kadar rata-rata 91,21 ppm atau setara dengan 2.482 ton skandium. Penelitian awal skandium dilakukan pada zona limonit dan batuan asal dari 200 data ICP OES daerah Konawe Utara termasuk 74 data dari Blok Tapunopaka, 8 data hasil petrografi batuan asal, dan 4 data hasil analisis XRD batuan asal. Batuan asal dari limonit mengnadung skandium adalah harsburgit dan klinopiroksenit. Kandungan skandium dalam batuan asal sangat menentukan kandungan skandium di zona limonit Skandium di zona limonit berkorelasi positif dengan alumunium dengan R2=0,6817, menunjukkan bahwa skandium hadir bersama dan evolusi skandium dipengaruhi oleh alumunium. Dengan tidak ditemukannya batuan basa yang kaya alumunium sebagai batuan asal dan teridentifikasinya lizardit ((Mg,Al)3((Si,Fe)2O5)(OH)4), margarit (CaAl2(Si2Al2)O10(OH)2) dan klinoklor (Mg2.8Fe1.75Al2.7Si2.65O10(OH)8) sebagai mineral yang mengandung alumunium pada harsburgit dan klinopiroksenit maka lizardit, margarit, dan klinoklor diduga kuat sebagai mineral pembawa skandium.
Scandium, one of the elements forming limonite rocks, is highly prospective to develop economically. In Tapunopaka Block, this element is part of 27.22 million tons of limonite measured resources with the average grade of 91.21 ppm equivalent to 2,482 tons of contained metal. Research was carried on in the limonite zone and host rock taking 200 ICP OES data in North Konawe Region including 74 data from Tapunopaka Block, 8 petrographic data from host rocks and 4 data from XRD analysis of source rocks. The host rocks formed by scandium element are harzburgite and clinopyroxenite. The amount of scandium concentration in the host rocks highly influences scandium content in the limonite zone. Scandium in the limonite zone has a positive correlation with aluminum (R2=0,6817). This indicates that scandium presence and its evolution should be affected by aluminium. The research shows that no mafic rocks, identified as rich aluminium host rocks, was found and lizardite ((Mg,Al)3((Si,Fe)2O5)(OH)4), margarite (CaAl2(Si2Al2)O10(OH)2) dan clinochlore (Mg2.8Fe1.75Al2.7Si2.65O10(OH)8) is recognized as mineral containing alumimium in the harzburgite and clinopyroxenite. This concludes that lizardite, margarite, and clinochlore is indicatively defined a scandium-bearing mineral.
Keywords
Full Text:
PDFReferences
T. Aiglsperger et al., “Critical metals (REE, Sc, PGE) in Ni laterites from Cuba and the Dominican Republic,” Ore Geol. Rev., vol. 73, 2016, doi: 10.1016/j.oregeorev.2015.10.010.
M. Chassé, W. L. Griffin, S. Y. O’Reilly, and G. Calas, “Scandium speciation in a world-class lateritic deposit,” Geochemical Perspect. Lett., vol. 3, no. 2, 2017, doi: 10.7185/geochemlet.1711.
M. Chassé, W. L. Griffin, S. Y. O’Reilly, and G. Calas, “Australian laterites reveal mechanisms governing scandium dynamics in the critical zone,” Geochim. Cosmochim. Acta, vol. 260, 2019, doi: 10.1016/j.gca.2019.06.036.
U. G. & T. D. Exploration Planning & Mining Development, “Laporan Hasil Kegiatan Studi REE (Rare Earth Element) IUP/KK Nikel PT Antam Tbk,” 2021
R. Harris, “Geodynamic patterns of ophiolites and marginal basins in the Indonesian and New Guinea regions,” Geol. Soc. Spec. Publ., vol. 218, 2004, doi: 10.1144/GSL.SP.2003.218.01.25.
R. A. Indra Kusuma, H. Kamaruddin, M. F. Rosana, and E. Tintin Yuningsih, “Geokimia Endapan Nikel Laterit di Tambang Utara, Kecamatan Pomalaa, Kabupaten Kolaka, Provinsi Sulawesi Tengara,” J. Geol. dan Sumberd. Miner., vol. 20, no. 2, 2019, doi: 10.33332/jgsm.v20i2.418.
A. Ito, T. Otake, A. Maulana, K. Sanematsu, Sufriadin, and T. Sato, “Geochemical constraints on the mobilization of Ni and critical metals in laterite deposits, Sulawesi, Indonesia: A mass-balance approach,” Resour. Geol., vol. 71, no. 3, 2021, doi: 10.1111/rge.12266.
A. Kadarusman, S. Miyashita, S. Maruyama, C. D. Parkinson, and A. Ishikawa, “Petrology, geochemistry and paleogeographic reconstruction of the East Sulawesi Ophiolite, Indonesia,” Tectonophysics, vol. 392, no. 1–4, 2004, doi: 10.1016/j.tecto.2004.04.008.
H. Kamaruddin, “Model Konseptual Endapan Laterit Nikel Pomalaa, Sulawesi Tenggara, Indonesia,” Padjajaran University Indonesia, 2018.
H. Kamaruddin, R. A. Indrakususma, M. F. Rosana, N. Sulaksana, and E. T. Yuningsih, “PROFIL ENDAPAN LATERIT NIKEL DI POMALAA, KABUPATEN KOLAKA, PROVINSI SULAWESI TENGGARA,” Bul. Sumber Daya Geol., vol. 13, no. 2, 2018, doi: 10.47599/bsdg.v13i2.221.
T. M. Van Leeuwen, “Mineral Deposits of Sulawesi,” 2011, p. 130. doi: 10.13140/2.1.3843.2322.
K. R. Long, B. S. Van Gosen, N. K. Foley, and D. Cordier, “The principal rare earth elements deposits of the United States: A summary of domestic deposits and a global perspective,” in Non-Renewable Resource Issues: Geoscientific and Societal Challenges, 2012. doi: 10.1007/978-90-481-8679-2_7.
A. Maulana, Sufriadin, K. Sanematsu, and M. Sakakibara, “Study on Sc-bearing Lateritic Ni deposits in Ultramafic Rock from Sulawesi: A New Paradigm in Indonesia Metal Mining Industry,” in IOP Conference Series: Materials Science and Engineering, 2019, vol. 676, no. 1. doi: 10.1088/1757-899X/676/1/012032.
C. Monnier, J. Girardeau, R. C. Maury, and J. Cotten, “Back-arc basin origin for the East Sulawesi ophiolite (eastern Indonesia),” Geology, vol. 23, no. 9, 1995, doi: 10.1130/0091-7613(1995)023<0851:BABOFT>2.3.CO;2.
J. C. Norman and L. A. Haskin, “The geochemistry of Sc: A comparison to the rare earths and Fe,” Geochim. Cosmochim. Acta, vol. 32, no. 1, 1968, doi: 10.1016/0016-7037(68)90089-6.
S. Onggang, A. Maulana, Sufriadin, and U. R. Irfan, “Preliminary Study of Scandium Enrichment in Lateritic Profile from Weathered Ultramafic Rock in Lapaopao Area Kolaka Regency of Southeast Sulawesi,” in IOP Conference Series: Earth and Environmental Science, 2021, vol. 921, no. 1. doi: 10.1088/1755-1315/921/1/012040.
C. Parkinson, “Emplacement of the East Sulawesi ophiolite: evidence from subophiolite metamorphic rocks,” J. Asian Earth Sci., vol. 16, no. 1, 1998, doi: 10.1016/S0743-9547(97)00039-1.
PT ANTAM Tbk, “Navigating the Challenges for Business Sustainability,” Jakarta, Indonesia, 2020.
PT ANTAM Tbk, “Strengthening Core Business for Sustainable Growth,” Jakarta, Indonesia, 2021.
H. B. Qin, S. Yang, M. Tanaka, K. Sanematsu, C. Arcilla, and Y. Takahashi, “Scandium immobilization by goethite: Surface adsorption versus structural incorporation,” Geochim. Cosmochim. Acta, vol. 294, 2021, doi: 10.1016/j.gca.2020.11.020.
T. O. Simandjuntak and A. J. Barber, “Contrasting tectonic styles in the neogene orogenic belts of Indonesia,” Geol. Soc. Spec. Publ., vol. 106, 1996, doi: 10.1144/GSL.SP.1996.106.01.12.
Surono, Geologi Lengan Tenggara Sulawesi, 2nd ed. Bandung: Badan Geologi Kementerian Energi dan Sumberdaya Mineral Republik Indonesia, 2013.
Surono, “A sedimentological investigation of southeastern Sulawesi, Indonesia, with special reference to the Kendari area,” Univ. Wollongong Diss., 1994.
Y. Teitler, M. Cathelineau, M. Ulrich, J. P. Ambrosi, M. Munoz, and B. Sevin, “Petrology and geochemistry of scandium in New Caledonian Ni-Co laterites,” J. Geochemical Explor., vol. 196, 2019, doi: 10.1016/j.gexplo.2018.10.009.
U. G. & T. D. Tim Eksplorasi Nikel Sulawesi Tenggara, “Laporan Akhir Eksplorasi Nikel Laterit Daerah Tapunopaka Dan Lalindu Timur Provinsi Sulawesi Tenggara,” 2021.
S. Tougaard and A. Ignatiev, “Atomic structure of the scandium (0001) surface,” Surf. Sci., vol. 115, no. 2, 1982, doi: 10.1016/0039-6028(82)90407-1.
M. Ulrich, M. Cathelineau, M. Muñoz, M. C. Boiron, Y. Teitler, and A. M. Karpoff, “The relative distribution of critical (Sc, REE) and transition metals (Ni, Co, Cr, Mn, V) in some Ni-laterite deposits of New Caledonia,” J. Geochemical Explor., vol. 197, 2019, doi: 10.1016/j.gexplo.2018.11.017.
A. E. Williams-Jones and O. V. Vasyukova, “The economic geology of scandium, the runt of the rare earth element litter,” Econ. Geol., vol. 113, no. 4, 2018, doi: 10.5382/econgeo.2018.4579.
DOI: https://doi.org/10.31284/j.semitan.j.2022.v1i1.4954
Refbacks
- There are currently no refbacks.