Calculation Study of Double Pipe Type Heat Exchanger in LNG Plant Pre-Design with Capacity 250 tons/hour

Eky Novianarenti, Erlinda Ningsih, Nanik Astuti Rahman

Abstract


In industrial processes, heat exchangers are very important tools and are always needed. Heat exchangers can be used to increase and decrease the temperature. The most widely used type of heat exchanger is the Double Pipe or DPHE type. The LNG plant is one of the industries that uses a heat exchanger in the process of lowering the initial temperature of the LNG to change the gas phase to liquid. The aim of this study is to obtain better efficiency in the LNG manufacturing process, so it is necessary to carry out a heat exchanger design study. Based on the design calculation results, it was found that Heat Exchanger type 2-4, material Carbon steel, area 2076, 16 m2, Rd 0.005 hr ft2 oF/btu and ΔP of 4.4051 psi. It can be concluded that the heat changer design is feasible to operate safely and without any obstacles. 


Full Text:

PDF

References


S. Yadav, R. Banerjee, and S. Seethamraju, “Thermodynamic Analysis of LNG Regasification Process,” Chem. Eng. Trans., vol. 94, no. May, pp. 919–924, 2022, doi: 10.3303/CET2294153.

A. Wahid and F. F. Adicandra, “Optimization control of LNG regasification plant using Model Predictive Control,” IOP Conf. Ser. Mater. Sci. Eng., vol. 334, no. 1, 2018, doi: 10.1088/1757-899X/334/1/012022.

B. C. Chukwudi and M. B. Ogunedo, “Design and Construction of a Shell and Tube Heat Exchanger,” Elixir Int. J., vol. 118, no. May, pp. 50687–50691, 2018, [Online]. Available: www.elixirpublishers.com.

M. Farnam, M. Khoshvaght-Aliabadi, and M. J. Asadollahzadeh, “Heat transfer intensification of agitated U-tube heat exchanger using twisted-tube and twisted-tape as passive techniques,” Chem. Eng. Process. - Process Intensif., vol. 133, pp. 137–147, 2018, doi: 10.1016/j.cep.2018.10.002.

E. Ningsih, Fitriana, and D. Pratiwi, “Shell and Tube Type Heat Exchanger Design with Stainless Steel Material,” pp. 81–89, 2022.

J. P. Fanaritis and J. W. Bevevino, “Designing Shell-and-Tube Heat Exchangers.,” Chem. Eng. (New York), vol. 83, no. 14, pp. 62–71, 1976.

A. Nurrahman, “Evaluasi Neraca Massa Kolom Deethanizer di Unit Gas Plant ( Evaluation of the Mass Balance of the Deethanizer Column in the Gas Plant Unit ) bisnis dalam hal pengolahan bahan bakar salah satunya dalam pengolahan LPG [ 1 ]. Untuk umumnya yang membedakan ad,” vol. 6, no. 2, pp. 160–173, 2021.

E. Ningsih, I. Albanna, A. P. Witari, and G. L. Anggraini, “Performance Simulation on the Shell and Tube of Heat Exchanger By Aspen Hysys V.10,” J. Rekayasa Mesin, vol. 13, no. 3, pp. 701–706, 2022, doi: 10.21776/jrm.v13i3.1078.

V. K. Patel and R. V Rao, “Design optimization of shell-and-tube heat exchanger using particle swarm optimization technique,” Appl. Therm. Eng., vol. 30, no. 11–12, pp. 1417–1425, 2010, doi: 10.1016/j.applthermaleng.2010.03.001.

M. H. Mousa, N. Miljkovic, and K. Nawaz, “Review of heat transfer enhancement techniques for single phase flows,” Renew. Sustain. Energy Rev., vol. 137, 2021, doi: 10.1016/j.rser.2020.110566.

S. Freund and S. Kabelac, “Investigation of local heat transfer coefficients in plate heat exchangers with temperature oscillation IR thermography and CFD,” Int. J. Heat Mass Transf., vol. 53, no. 19–20, pp. 3764–3781, 2010, doi: 10.1016/j.ijheatmasstransfer.2010.04.027.

E. Ningsih, A. H. Fahmi, M. Riyanando, M. R. Faiz, E. C. Muliawati, and R. Izroiel, “Counter Current Type Shell and Tube Heat Exchanger (STHE) Design with Stainless Steel Material,” 2022.

Flynn, A.M., Akashige, T. and Theodore, L. (2019). Front Matter. In Kern's Process Heat Transfer (eds A.M. Flynn, T. Akashige and L. Theodore).

V. Semaskaite, M. Bogdevicius, T. Paulauskiene, J. Uebe, and L. Filina-Dawidowicz, “Improvement of Regasification Process Efficiency for Floating Storage Regasification Unit,” J. Mar. Sci. Eng., vol. 10, no. 7, 2022, doi: 10.3390/jmse10070897.

M. S. Khan, S. Effendy, I. A. Karimi, and A. Wazwaz, “Improving design and operation at LNG regasification terminals through a corrected storage tank model,” Appl. Therm. Eng., vol. 149, no. December 2018, pp. 344–353, 2019, doi: 10.1016/j.applthermaleng.2018.12.060.

R. Shanahan and A. Chalim, “Literature Study On The Effectiveness Of Shell And Tube Heat Exchangers 1-1 Glycerine Fluid Systems –,” vol. 6, no. 9, pp. 164–170, 2020.

A. Shalsa, B. Wardhani, and A. T. Labumay, “Influence of Fluid Inflow Rate on Performance Effectiveness of Shell and Tube Type Heat Exchanger,” 2022, doi: 10.31284/j.jmesi.2022.v2i1.2993.

R. Beldar and S. Komble, “Mechanical Design of Shell and Tube Type Heat Exchanger as per ASME Section VIII Div.1 and TEMA Codes for Two Tubes,” Int. J. Eng. Tech. Res., vol. 8, no. 7, pp. 1–4, 2018.

A. A. Abbasian Arani and H. Uosofvand, “Double-pass shell-and-tube heat exchanger performance enhancement with new combined baffle and elliptical tube bundle arrangement,” Int. J. Therm. Sci., vol. 167, no. December 2020, p. 106999, 2021, doi: 10.1016/j.ijthermalsci.2021.106999.




DOI: https://doi.org/10.31284/j.jmesi.2024.v4i1.5164

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.