Anisotropic Deformation Mechanism in the Twin-Tube Tunnel Sections: Empirical Insight from Multi-Point Displacement Monitoring

Houssam Khelalfa, Mustapha Tekkouk, Mohammed-Amin Boumehraz

Abstract


This study evaluates the stability of a twin-tube tunnel through a combined approach of rock mass classification, numerical modeling, and real-time deformation monitoring. The rock mass along the tunnel alignment was characterized using the Rock Mass Rating (RMR) system, incorporating physical, geological, and geotechnical data from the project site. Support systems were designed for each geotechnical unit based on RMR and the Q-system support chart. Field monitoring was conducted over one year using a Leica TS09 tachometer and 3D displacement monitoring targets installed at the top heading and invert/bench, with data processed via Amberg Tunnel 2.0 software. Complementing the field measurements, 2D numerical analyses were performed to assess the left portal slope stability (Slide 6.0 software) and provisional support behavior (Phase2 2D program). The numerical results were validated against in-situ monitoring data, demonstrating strong agreement. The study confirms effective rock mass deformation control and satisfactory confinement stability, highlighting the reliability of the integrated methodology for tunnel stability assessment.


Keywords


Twin-Tubes Tunnel, Rock Mass Ckassification, Provisional Support, Deformations Control, Numerical Modelling.

Full Text:

PDF

References


D. Wu, K. Xu, P. Guo, G. Lei, K. Cheng, and X. Gong, “Ground deformation characteristics induced by mechanized shield twin tunnelling along curved alignments,” Adv. Civil Eng., vol. 2021, Art. no. 6640072, pp. 1–17, 2021. doi: 10.1155/2021/6640072.

R. B. Peck, “Deep excavations and tunnelling in soft ground,” in Proc. 7th Int. Conf. Soil Mech. Found. Eng., Mexico City, Mexico, 1969, vol. State-of-the-Art, pp. 225–290.

J. Golser and K. Mussger, “New Austrian Tunnelling Method (NATM), contractual aspects,” in Proc. Int. Tunnel Symp. Tunnelling Under Difficult Conditions, Tokyo, Japan, 1979, pp. 387–392.

E. T. Brown, “Putting the NATM into perspective,” Tunnels Tunnelling Int., vol. 13, no. 10, pp. 7–13, Oct. 1981.

E. B. Aygar, “Evaluation of new Austrian tunnelling method applied to Bolu tunnel’s weak rocks,” J. Rock Mech. Geotech. Eng., vol. 12, no. 3, pp. 541–553, 2020. doi: 10.1016/j.jrmge.2019.12.011.

U.S. Army Corps of Engineers, Engineering and Design: Tunnels and Shafts in Rock, EM 1110-2-2901, May 1997. [Online]. Available: https://www.publications.usace.army.mil

R. Ulusay and H. Sönmez, Propriétés mécaniques des massifs rocheux, 2nd ed. Ankara, Turkey: TMMOB Chamber of Geological Engineers, 2007, Publ. no. 60.

M. Rasouli, “Engineering geological studies of the diversion tunnel, focusing on stabilization analysis and support design, Iran,” Eng. Geol., vol. 108, no. 3–4, pp. 208–224, 2009. doi: 10.1016/j.enggeo.2009.07.002.

W. Ali, “Rock mass characterization for diversion tunnels at Diamer Basha Dam, Pakistan – a design perspective,” Int. J. Sci. Eng. Technol., vol. 3, no. 9, pp. 1292–1296, 2014.

M. Genis, H. Basarir, A. Ozarslan, E. Bilir, and E. Balaban, “Engineering geological appraisal of the rock masses and preliminary support design, Dorukhan Tunnel, Zonguldak, Turkey,” Eng. Geol., vol. 92, no. 1–2, pp. 14–26, 2007. doi: 10.1016/j.enggeo.2007.03.001.

M. Rasouli, “Engineering geological studies of the diversion tunnel, focusing on stabilization analysis and support design, Iran,” Eng. Geol., vol. 108, no. 3–4, pp. 208–224, 2009. doi: 10.1016/j.enggeo.2009.07.002.

W. Ali, “Rock mass characterization for diversion tunnels at Diamer Basha Dam, Pakistan – a design perspective,” Int. J. Sci. Eng. Technol., vol. 3, no. 9, pp. 1292–1296, 2014.

M. Genis, H. Basarir, A. Ozarslan, E. Bilir, and E. Balaban, “Engineering geological appraisal of the rock masses and preliminary support design, Dorukhan Tunnel, Zonguldak, Turkey,” Eng. Geol., vol. 92, no. 1–2, pp. 14–26, 2007. doi: 10.1016/j.enggeo.2007.03.001.

C. Yoo, “Performance of multi-faced tunnelling – A 3D numerical investigation,” Tunn. Undergr. Space Technol., vol. 24, no. 5, pp. 562–573, 2009. doi: 10.1016/j.tust.2009.02.005.

M. Karakus and R. J. Fowell, “2-D and 3-D finite element analyses for the settlement due to soft ground tunnelling,” Tunn. Undergr. Space Technol., vol. 21, no. 3, p. 392, 2006.

A. G. Chermahini and H. Tahghighi, “Numerical finite element analysis of underground tunnel crossing an active reverse fault: A case study on the Sabzkouh segmental tunnel,” Geomech. Geoeng., vol. 14, no. 3, pp. 155–166, 2019. doi: 10.1080/17486025.2019.1573323.

B. Chu and Y. Lin, “Mechanical behavior of a twin-tunnel in multi-layered formations,” Tunn. Undergr. Space Technol., vol. 22, no. 3, pp. 351–362, 2007. doi: 10.1016/j.tust.2006.07.003.

G. Zheng, Y. Du, X. Cheng, Y. Diao, X. Deng, and F. Wang, “Characteristics and prediction methods for tunnel deformations induced by excavations,” Geomech. Eng., vol. 12, no. 3, pp. 361–397, 2017. doi: 10.12989/gae.2017.12.3.361.

C. Y. Ou and P. G. Hsieh, “A simplified method for predicting ground settlement profiles induced by excavation in soft clay,” Comput. Geotech., vol. 38, no. 8, pp. 987–997, 2011. doi: 10.1016/j.compgeo.2011.07.003.

K. Terzaghi and R. B. Peck, Soil Mechanics in Engineering Practice. New York, NY, USA: Wiley, 1948.

R. B. Peck, “Advantages and limitations of the observational method in applied soil mechanics,” Géotechnique, vol. 19, no. 2, pp. 171–187, 1969.

J. Spross and F. Johansson, “When is the observational method in geotechnical engineering favorable?,” Struct. Saf., vol. 66, pp. 17–26, 2017. doi: 10.1016/j.strusafe.2017.01.006.

S. Sakurai, S. Akutagawa, K. Takeuchi, M. Shinji, and N. Shimizu, “Back analysis for tunnel engineering as a modern observational method,” Tunn. Undergr. Space Technol., vol. 18, no. 2–3, pp. 185–196, 2003. doi: 10.1016/S0886-7798(03)00027-8.

T. Chapman and G. Green, “Observational method looks set to cut city building costs,” Proc. Inst. Civ. Eng. - Civ. Eng., vol. 157, no. 3, pp. 125–133, 2004.

R. J. Finno and M. Calvello, “Supported excavations: Observational method and inverse modeling,” J. Geotech. Geoenviron. Eng., vol. 131, no. 7, pp. 826–836, 2005.

R. Fuentes, A. Pillai, and P. Ferreira, “Lessons learnt from a deep excavation for future application using the observational method,” J. Rock Mech. Geotech. Eng., vol. 10, no. 3, pp. 468–485, 2018. doi: 10.1016/j.jrmge.2017.11.009.

P. R. Glass and A. J. Powderham, “Application of the observational method at the Limehouse Link,” Géotechnique, vol. 44, no. 4, pp. 665–679, 1994.

R. B. Peck, “The observational method can be simple,” Proc. Inst. Civ. Eng. - Geotech. Eng., vol. 149, no. 2, pp. 71–74, 2001.

L. Joleaud, M. Ferrand, and E. Ficheur, Carte géologique de l'Algérie 1:50,000. Feuille 74, El Aria. Algiers, Algeria: Service de la Carte Géologique de l'Algérie, 1908.

W. Wildi, “La chaîne tello-rifaine (Algérie, Maroc, Tunisie): Structure, stratigraphie et évolution du Trias au Miocène,” Rev. Géol. Dyn. Géogr. Phys., vol. 24, no. 3, pp. 201–297, 1983.

H. Djellit, Évolution tectono-métamorphique du socle Kabyle et polarité de mise en place des nappes de flysch en Petite Kabylie occidentale (Algérie). Ph.D. dissertation, Univ. Paris-Sud, Orsay, France, 1987.

E. Sopacı and H. Akgün, “Engineering geological investigations and the preliminary support design for the proposed Ordu Peripheral Highway Tunnel, Ordu, Turkey,” Eng. Geol., vol. 96, no. 1–2, pp. 43–61, 2008. doi: 10.1016/j.enggeo.2007.10.001.

N. Barton, Application of the Q-System in Sweden and Norway. Oslo, Norway: Norwegian Geotechnical Institute, 2013.

T. Miranda, A. Gomes, A. Correia, and R. Nogueira, “Alternative models for the calculation of the RMR and Q indexes for granite rock masses,” Academia.edu, 2015. [Online]. Available: http://www.academia.edu/3114361

A. El-Naqa, “Application of RMR and Q geomechanical classification systems along the proposed Mujib Tunnel route, central Jordan,” Bull. Eng. Geol. Environ., vol. 60, no. 4, pp. 257–269, 2001. doi: 10.1007/s100640100112.

S. Y. Choi and H. D. Park, “Comparison among different criteria of RMR and Q-system for rock mass classification for tunnelling in Korea,” Tunn. Undergr. Space Technol., vol. 17, no. 4, pp. 391–401, 2002. doi: 10.1016/S0886-7798(02)00063-9.

Z. T. Bieniawski, “Classification of rock masses for engineering: The RMR system and future trends,” in Rock Testing and Site Characterization, Oxford, UK: Pergamon, 1989, pp. 553–573.

H. Khelalfa, “Numerical modeling for engineering analysis, designing and monitoring of support systems for twin-tube tunnel,” Rev. Rom. Ing. Civ., vol. 13, no. 3, pp. 193–230, 2022. doi: 10.37789/rjce.2022.13.3.1.

H. Khelalfa, B. Aykan, and H. Boulmaali, “Monitoring of tunnel rock mass deformations during provisional support stage: A case study,” Mining Rev., vol. 28, no. 1, pp. 1–23, 2022. doi: 10.2478/minrv-2022-0001.

H. Khelalfa, U. Sakalli, E. B. Aygar, O. Şimşek, B. Aykan, and H. Boulmaali, “Slope stabilization of twin-tubes tunnel portal by anchor bolts support system,” Rom. J. Transp. Infrastruct., vol. 11, no. 2, pp. 1–37, 2022. doi: 10.2478/rjti-2022-0014.

H. Khelalfa, U. Sakalli, E. B. Aygar, O. Şimşek, and B. Aykan, “Internal and external collapse analysis of twin-tubes tunnel in the initial support stage,” World J. Civ. Eng. Archit., vol. 1, no. 1, pp. 33–40, 2022. doi: 10.31586/jsmhes.2023.697.

M. Ait Boujmaa and H. Khelalfa, “Geotechnical stability analysis of the quay wall of Port Ksar Sghir, Morocco,” J. Earth Marine Technol., vol. 2, no. 2, pp. 73–78, 2022. doi: 10.31284/j.jemt.2022.v2i2.2374.




DOI: https://doi.org/10.31284/j.jemt.2025.v5i2.7579

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Houssam Khelalfa, Mustapha Tekkouk, Mohammed-Amin Boumehraz

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Published by Lembaga Penelitian dan Pengabdian Masyarakat (LPPM)
Institut Teknologi Adhi Tama Surabaya (ITATS)