The Relation of Fault Fracture Density with the Residual Gravity; case study in Muria

Fajar Rizki Widiatmoko, Ratih Hardini Kusuma Putri, Huzaely Latief Sunan

Abstract


The usages of the FFD analytical method massively are utilized during the last decade, especially in the geothermal preliminary study that can show the prospect reservoir area. This article discusses the correlation of the FFD value with the residual gravity value that is assumed as an indication of the underneath magmatic body. The correlation of FFD value with residual gravity value is applied in Muria mountain. Muria is classified as the volcano body that contains the magmatic body, also exist Genuk volcano and Patiayam hill around Muria. The correlation shows that FFD value and residual gravity value have a relation, but especially for the uninfluenced by structural activity has a low value of FFD. The correlation of FFD and residual gravity is double-checked with the ground truth data, it showing the proof relation. This way of methodology may use for finding the underneath magmatic body, especially applied to the surface that has not been influenced by structural activity.

Keywords


Structure density, magmatic detection, microstructural detection

Full Text:

PDF

References


J. Canny, “A Computational Approach to Edge Detection,” IEEE Trans. Pattern Anal. Mach. Intell., 1986, doi: 10.1109/TPAMI.1986.4767851.

J. M. Vermilye and C. H. Scholz, “The process zone: A microstructural view of fault growth,” J. Geophys. Res. Solid Earth, 1998, doi: 10.1029/98jb00957.

H. H. Wibowo, “Application of Fault and Fracture Density (FFD) Method for Geothermal Exploration in Non-Volcanic Geothermal System; a Case Study in Sulawesi-Indonesia,” 2010.

H. M. Savage and E. E. Brodsky, “Collateral damage: Evolution with displacement of fracture distribution and secondary fault strands in fault damage zones,” J. Geophys. Res. Solid Earth, 2011, doi: 10.1029/2010JB007665.

H. L. Sunan and S. U. Pratomo, “POTENSI ENDAPAN EMAS YANG BERASOSIASI DENGAN STRUKTUR GEOLOGI DAERAH LIO TIMUR FLORES NUSA TENGGARA TIMUR,” Din. Rekayasa, 2020, doi: 10.20884/1.dr.2020.16.1.312.

S. Iswahyudi, M. A. Pamungkas, H. L. Sunan, and M. R. Aditama, “KONTROL STRUKTUR GEOLOGI PADA KEMUNCULAN MATA AIR PANAS BUMI DAERAH SUBANG, JAWA BARAT,” J. Geosaintek, 2019, doi: 10.12962/j25023659.v5i3.6237.

. O., D. A. Ramadhan P, F. R. W, and R. T. A, “Identification of Geothermal Potential Based on Fault Fracture Density (FFD), Geological Mapping and Geochemical Analysis, Case Study : Bantarkawung, Brebes, Central Java,” KnE Energy, 2015, doi: 10.18502/ken.v2i2.369.

F. R. Widiatmoko, M. N. Hadi, D. Kusnadi, S. Iswahyudi, and F. Fadlin, “The conceptual model of Wae Sano Geothermal field based on geology and geochemistry data,” J. Earth Mar. Technol., 2020, doi: 10.31284/j.jemt.2020.v1i1.1189.

F. R. Widiatmoko et al., “Possibility of geothermal offshore in Sangihe archipelago, northern part of Sulawesi, Indonesia,” IOP Conf. Ser. Mater. Sci. Eng., 2021, doi: 10.1088/1757-899x/1010/1/012004.

R. W. Van Bemmelen, “The Geology of Indonesia. General Geology of Indonesia and Adjacent Archipelagoes,” Government Printing Office, The Hague. 1949, doi: 10.1109/VR.2018.8447558.

P. Bird, “An updated digital model of plate boundaries,” Geochemistry, Geophys. Geosystems, 2003, doi: 10.1029/2001GC000252.

R. Soeria-Atmadja, R. C. Maury, H. Bellon, H. Pringgoprawiro, M. Polve, and B. Priadi, “Tertiary magmatic belts in Java,” J. Southeast Asian Earth Sci., 1994, doi: 10.1016/0743-9547(94)90062-0.

F. R. Widiatmoko, A. Zamroni, M. A. Siamashari, and A. N. Maulina, “REKAMAN STASIUN GPS SEBAGAI PENDETEKSI PERGERAKAN TEKTONIK, STUDI KASUS: BENCANA TSUNAMI ACEH 26 DESEMBER 2004,” in Prosiding Seminar Teknologi Kebumian dan Kelautan, 2019, vol. 1, no. 1, pp. 236–240, [Online]. Available: https://ejurnal.itats.ac.id/semitan/article/view/856.

T. Suwarti and R. Wikarno, “Geological map of the Kudus Quadrangle, Java,” Bandung, Indonesia, 1992.

BIG, “DEMNAS,” DEMNAS. 2020.

M. Y. Iswari and K. Anggraini, “DEMNAS: MODEL DIGITAL KETINGGIAN NASIONAL UNTUK APLIKASI KEPESISIRAN,” OSEANA, 2018, doi: 10.14203/oseana.2018.vol.43no.4.2.

D. T. Sandwell and W. H. F. Smith, “Marine gravity anomaly from Geosat and ERS 1 satellite altimetry,” J. Geophys. Res. B Solid Earth, 1997, doi: 10.1029/96JB03223.

W. H. F. Smith and D. T. Sandwell, “Global sea floor topography from satellite altimetry and ship depth soundings,” Science (80-. )., 1997, doi: 10.1126/science.277.5334.1956.

R. Vajk, “BOUGUER CORRECTIONS WITH VARYING SURFACE DENSITY,” GEOPHYSICS, 1956, doi: 10.1190/1.1438292.

M. Bonafede and C. Ferrari, “Analytical models of deformation and residual gravity changes due to a Mogi source in a viscoelastic medium,” Tectonophysics, 2009, doi: 10.1016/j.tecto.2008.10.006.

W. R. Buck, F. Martinez, M. S. Steckler, and J. R. Cochran, “Thermal consequences of lithospheric extension: Pure and simple,” Tectonics, 1988, doi: 10.1029/TC007i002p00213.

S. Bronto, Geologi Gunung Api Purba. 2013.

S. Bronto, “Fasies gunung api dan aplikasinya,” Indones. J. Geosci., 2006, doi: 10.17014/ijog.vol1no2.20061.




DOI: https://doi.org/10.31284/j.jemt.2021.v1i2.1743

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Fajar Rizki Widiatmoko

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.