Computational Fluid Dynamic for Performance Hydrofoil due to Angle of Attack
Abstract
Keywords
Full Text:
PDFReferences
Müller, J. D. (2015). Essentials of computational fluid dynamics. In Essentials of Computational Fluid Dynamics. https://doi.org/10.5860/choice.196614
Zau Beu, M. M., & Kusuma, I. P. A. I. (2017). Investigasi Numerik VIV (Vortex Induced Vibration) Pada Diameter Kabel Hydrophone 0.04 M Sistem Akustik Bawah Air. ROTOR, 10(2), 47. https://doi.org/10.19184/rotor.v10i2.6387
Pranatal, E., & Beu, M. M. Z. (2018). Analisa CFD Penggunaan Duct pada Turbin Kombinasi Darrieus-Savonius. Jurnal IPTEK. https://doi.org/10.31284/j.iptek.2018.v22i1.239
Marchand, J. B., Astolfi, J. A., & Bot, P. (2017). Discontinuity of lift on a hydrofoil in reversed flow for tidal turbine application. European Journal of Mechanics, B/Fluids, 63, 90–99. https://doi.org/10.1016/j.euromechflu.2017.01.016
Liu, Z., Qu, H., & Shi, H. (2019). Performance evaluation and enhancement of a semi-activated flapping hydrofoil in shear flows. Energy, 189, 116255. https://doi.org/10.1016/j.energy.2019.116255
Stern, F., Wang, Z., Yang, J., Sadat-Hosseini, H., Mousaviraad, M., Bhushan, S., Grenestedt, J. L. (2015). Recent progress in CFD for naval architecture and ocean engineering. Journal of Hydrodynamics, 27(1), 1–23. https://doi.org/10.1016/S1001-6058(15)60452-8
Putranto, T., & Sulisetyono, A. (2017). Lift-drag coefficient and form factor analyses of hydrofoil due to the shape and angle of attack. International Journal of Applied Engineering Research, 12(21), 11152–11156
Amini, Y., Kianmehr, B., & Emdad, H. (2019). Dynamic stall simulation of a pitching hydrofoil near free surface by using the volume of fluid method. Ocean Engineering. https://doi.org/10.1016/j.oceaneng.2019.106553
ANSYS-Fluent 2019R1 software
Elmekawy, A. N., Introduction to ANSYS Meshing Module-01
Wu, J. T., Chen, J. H., Hsin, C. Y., & Chiu, F. C. (2019). Dynamics of the FKT System with Different Mooring Lines. Polish Maritime Research, 26(1), 20–29. https://doi.org/10.2478/pomr-2019-0003
Vandoormaal, J.P., Raithby, G.D., 1984. Enhancements of the SIMPLE method for predicting incompressible fluid flows. Numer. Heat Transf. 7, 147–163.
Dagestad, I. (2018). Actuation moments for hydrofoil flaps, Norwegian University of Science and Technology, Department of Marine Technology
Newman, J. N., (1977). Marine Hydrodynamics, MIT.
White, F.M., 2011. Fluid Mechanics, seventh ed. McGraw-Hill, New York, USA.
Giesing, J.P., Smith, A.M.O., 1967. Potential flow about two-dimensional hydrofoils. J. Fluid Mech. 28, 113–129
Ni, Z., Dhanak, M., & Su, T. chow. (2019). Performance of a slotted hydrofoil operating close to a free surface over a range of angles of attack. Ocean Engineering, 188(June), 106296. https://doi.org/10.1016/j.oceaneng.2019.106296
Bai, K.J., 1978. A localized finite-element method for two-dimensional steady potential flows with a free surface. J. Ship Res. 22, 216–230.
DOI: https://doi.org/10.31284/j.jemt.2020.v1i1.1146
Refbacks
- There are currently no refbacks.
Copyright (c) 2020 Maria Margareta Zau Beu
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.