Rice Bran Oil Extraction: A valuable First Step Towards Edible Oil

Rosada Yulianti Naulina, Diana Novitasari, Devi Irmawati, Siti Zullaikah

Abstract


Rice bran has the potential to become a nutritional component that reduces disease risk and improves physical health. In addition, rice bran is a hypoallergenic (allergen-free) component which is a good source of dietary fiber. Rice bran oil extraction (RBO) is one of the most popular uses of rice bran. Judging from the health benefits and healthier composition, rice bran oil is very appropriate. The most unsaturated fatty acids are found in rice bran oil which has a composition of 80% unsaturated fatty acids. In taking yields, the extraction method is a practical and effective technique. This research aims to understand the effect of temperature, mesh size, and extraction time on the yield value and FFA RBO content. This Soxhlet uses several variables, with temperature variables of 60°C, 65°C, 70°C, 75°C, 80°C while time variables of 1, 2, 3, 4, and 5 hours with variations in mesh size of 100 and 60. The research results show that soxhletation extraction at mesh 100 optimum increases at a temperature of 70°C within 4 hours. Where the yield of oil produced was 11.62%. Meanwhile, for mesh 60, the optimum increase occurred at a temperature of 65°C within 4 hours with an oil yield of 12.90%. Rice bran oil extraction, the content of in rice bran oil extraction, the content of alkenes, aldehydes, and alkene bending.


Keywords


RBO;Extraction;Density;FFA;FTIR

Full Text:

PDF

References


A. Rahman, P. Dargusch, and D. Wadley, “The political economy of oil supply in Indonesia and the implications for renewable energy development,” Renew. Sustain. Energy Rev., vol. 144, no. March, p. 111027, 2021, doi: 10.1016/j.rser.2021.111027.

D. Khatiwada and S. Silveira, “Scenarios for bioethanol production in Indonesia: How can we meet mandatory blending targets?,” Energy, vol. 119, pp. 351–361, 2017, doi: 10.1016/j.energy.2016.12.073.

Y. Putrasari, A. Praptijanto, W. B. Santoso, and O. Lim, “Resources, policy, and research activities of biofuel in Indonesia: A review,” Energy Reports, vol. 2, pp. 237–245, 2016, doi: 10.1016/j.egyr.2016.08.005.

M. R. Anuar and A. Z. Abdullah, “Challenges in biodiesel industry with regards to feedstock, environmental, social and sustainability issues: A critical review,” Renew. Sustain. Energy Rev., vol. 58, pp. 208–223, 2016, doi: 10.1016/j.rser.2015.12.296.

B. M. W. P. K. Amarasinghe and N. C. Gangodavilage, “Rice bran oil extraction in Sri Lanka data for process equipment design,” Food Bioprod. Process., vol. 82, no. 1, pp. 54–59, 2004, doi: 10.1205/096030804322985326.

A. Mariod, M. Ismail, N. F. Abd Rahman, and B. Matthaus, “Stability of rice bran oil extracted by SFE and soxhlet methods during accelerated shelf-life storage,” Grasas y Aceites, vol. 65, no. 1, pp. 1–11, 2014, doi: 10.3989/gya.109413.

J. Zúñiga-Diaz, E. Reyes-Dorantes, A. Quinto-Hernandez, J. Porcayo-Calderon, J. G. Gonzalez-Rodriguez, and L. Martinez-Gomez, “Oil extraction from ‘Morelos Rice’ bran: Kinetics and raw oil stability,” J. Chem., vol. 2017, 2017, doi: 10.1155/2017/3837506.

R. Pandey and S. L. Shrivastava, “Comparative evaluation of rice bran oil obtained with two-step microwave assisted extraction and conventional solvent extraction,” J. Food Eng., vol. 218, pp. 106–114, 2018, doi: 10.1016/j.jfoodeng.2017.09.009.

J. A. A. M. Kamimura, K. K. Aracava, and C. E. C. Rodrigues, “Experimental data and modeling of rice bran oil extraction kinetics using ethanol as solvent,” Sep. Sci. Technol., vol. 52, no. 12, pp. 1921–1928, 2017, doi: 10.1080/01496395.2017.1307224.

A. Proctor and D. J. Bowen, “Ambient-temperature extraction of rice bran oil with hexane and isopropanol,” JAOCS, J. Am. Oil Chem. Soc., vol. 73, no. 6, pp. 811–813, 1996, doi: 10.1007/BF02517960.

S. Mingyai, A. Kettawan, K. Srikaeo, and R. Singanusong, “Physicochemical and antioxidant properties of rice bran oils produced from colored rice using different extraction methods,” J. Oleo Sci., vol. 66, no. 6, pp. 565–572, 2017, doi: 10.5650/jos.ess17014.

S. Fraterrigo Garofalo, T. Tommasi, and D. Fino, “A short review of green extraction technologies for rice bran oil,” Biomass Convers. Biorefinery, vol. 11, no. 2, pp. 569–587, 2021, doi: 10.1007/s13399-020-00846-3.

M. D. Luque de Castro and L. E. García-Ayuso, “Soxhlet extraction of solid materials: An outdated technique with a promising innovative future,” Anal. Chim. Acta, vol. 369, no. 1–2, pp. 1–10, 1998, doi: 10.1016/S0003-2670(98)00233-5.

A. Rohman, Rice Bran Oil’s Role in Health and Cooking. Elsevier, 2014. doi: 10.1016/B978-0-12-401716-0.00037-4.

I. D. G. A. Putrawan, R. Nugroho, and R. Anggara, “Ekstraksi Asam Lemak Bebas dari Minyak Dedak Padi Menggunakan Etanol-Air dalam Tangki Pengaduk,” Reaktor, vol. 17, no. 3, p. 166, 2017, doi: 10.14710/reaktor.17.3.166-176.

Badan Pusat Statistik, “Luas Panen dan Produksi Padi di Indonesia 2021 (Angka Tetap),” Bps, vol. 2021, no. 21, pp. 1–20, 2022.

K. R. E. B. Plessis ; Kaufman, J. Shulz, and R. P. Morgan, “Variables Affecting the Yields of Fatty Esters from Transesterified Vegetable Oils 1,” Weswiew Press, 1981.

N. Yuliasari and E. N. Permatasari, “Minyak Goreng Dedak Padi dengan Metode Batchwise Solvent Extraction,” J. Fundam. Appl. Chem. Eng., vol. 02, no. 01, pp. 25–29, 2021, [Online]. Available: https://repository.its.ac.id/87272/

S. Punia, M. Kumar, A. K. Siroha, and S. S. Purewal, “Rice Bran Oil: Emerging Trends in Extraction, Health Benefit, and Its Industrial Application,” Rice Sci., vol. 28, no. 3, pp. 217–232, 2021, doi: 10.1016/j.rsci.2021.04.002.

P. Trevisani Juchen, M. Nolasco Araujo, F. Hamerski, M. L. Corazza, and F. A. Pedersen Voll, “Extraction of parboiled rice bran oil with supercritical CO2 and ethanol as co-solvent: Kinetics and characterization,” Ind. Crops Prod., vol. 139, no. February, p. 111506, 2019, doi: 10.1016/j.indcrop.2019.111506.

F. Mas’ud and T. Kimia, “Minyak Bekatul Padi: Kandungan Gamma Oryzanol, Vitamin E dan Potensinya Sebagai Pangan Fungsional,” Pros. Semin. Has. Penelit., vol. 2017, pp. 65–70, 2017.

S. Nair et al., “Ekstraksi Dedak Padi Menjadi Minyak Mentah Dedak Padi ( Crude Rice Bran Oil ) Dengan Pelarut N-Hexane Dan,” Tek. Kim., vol. 16, no. 2, pp. 1–10, 2009.

F. Sjarifudin, N. Anizar, and S. Gunawan, “Pra-Desain Pabrik Minyak Goreng Dedak Padi dengan Metode Physical Refining,” J. Tek. ITS, vol. 11, no. 2, 2022, doi: 10.12962/j23373539.v11i2.87920.

dan H. K. Subriyer Nasir, Fitriyanti, “Jurnal_Rekayasa18.pdf,” Jurnal Rekayasa Sriwijaya, vol. 18, no. 2. pp. 39–40, 2009.

I. H. Rukunudin, P. J. White, C. J. Bern, and T. B. Bailey, “A modified method for determining free fatty acids from small soybean oil sample sizes,” JAOCS, J. Am. Oil Chem. Soc., vol. 75, no. 5, pp. 563–568, 1998, doi: 10.1007/s11746-998-0066-z.

C.-C. Lai, S. Zullaikah, S. R. Vali, and Y.-H. Ju, “Lipase-catalyzed production of biodiesel from rice bran oil,” J. Chem. Technol. Biotechnol., vol. 80, no. 3, pp. 331–337, 2005, doi: 10.1002/jctb.1208.

O. Pourali, F. S. Asghari, and H. Yoshida, “Sub-critical water treatment of rice bran to produce valuable materials,” Food Chem., vol. 115, no. 1, pp. 1–7, 2009, doi: 10.1016/j.foodchem.2008.11.099.

Suryati, A. Ismail, and Afriyanti, “Proses pembuatan minyak dedak padi (rice brain oil) menggunakan metode ekstraksi,” J. Teknol. Kim. Unimal, vol. 1, no. Mei, pp. 37–45, 2015, [Online]. Available: http://ojs.unimal.ac.id/index.php/jtk/article/view/62

S. Gunawan, S. Maulana, K. Anwar, and T. Widjaja, “Rice bran, a potential source of biodiesel production in Indonesia,” Ind. Crops Prod., vol. 33, no. 3, pp. 624–628, 2011, doi: 10.1016/j.indcrop.2010.12.027.

S. Zullaikah, Y. T. Rahkadima, and Y. H. Ju, “A non-catalytic in situ process to produce biodiesel from a rice milling by-product using a subcritical water-methanol mixture,” Renew. Energy, vol. 111, pp. 764–770, 2017, doi: 10.1016/j.renene.2017.04.040.

J. Li et al., “Biodiesel production from Camptotheca acuminata seed oil catalyzed by novel Brönsted-Lewis acidic ionic liquid,” Appl. Energy, vol. 115, pp. 438–444, 2014, doi: 10.1016/j.apenergy.2013.10.025.

S. K. Bhatia et al., “Conversion of waste cooking oil into biodiesel using heterogenous catalyst derived from cork biochar,” Bioresour. Technol., vol. 302, no. January, p. 122872, 2020, doi: 10.1016/j.biortech.2020.122872.

A. Bajaj, P. Lohan, P. N. Jha, and R. Mehrotra, “Biodiesel production through lipase catalyzed transesterification: An overview,” J. Mol. Catal. B Enzym., vol. 62, no. 1, pp. 9–14, 2010, doi: 10.1016/j.molcatb.2009.09.018.

E. G. Al-Sakkari et al., “Esterification of high FFA content waste cooking oil through different techniques including the utilization of cement kiln dust as a heterogeneous catalyst: A comparative study,” Fuel, vol. 279, no. April, p. 118519, 2020, doi: 10.1016/j.fuel.2020.118519.

K. Thinnakorn and J. Tscheikuna, “Biodiesel production via transesterification of palm olein using sodium phosphate as a heterogeneous catalyst,” Appl. Catal. A Gen., vol. 476, pp. 26–33, 2014, doi: 10.1016/j.apcata.2014.02.016.

E. G. Al-Sakkari, S. T. El-Sheltawy, M. F. Abadir, N. K. Attia, and G. El-Diwani, “Investigation of cement kiln dust utilization for catalyzing biodiesel production via response surface methodology,” Int. J. Energy Res., vol. 41, no. 4, pp. 593–603, 2017, doi: 10.1002/er.3635.

S. Rubalya Valantina, K. Arockia Jayalatha, D. R. Phebee Angeline, S. Uma, and B. Ashvanth, “Synthesis and characterisation of electro-rheological property of novel eco-friendly rice bran oil and nanofluid,” J. Mol. Liq., vol. 256, no. 2017, pp. 256–266, 2018, doi: 10.1016/j.molliq.2018.01.183.

H. C. Van Ness, Sixth Edition in S I Units Sixth Edition in SI Units, 6th ed., no. C. New Jersey: McGraw Hill, 2000.

B. S. Nasional, “SNI_01_3555_1998_Cara_Uji_Minyak_dan_Lem,” p. 31, 1988.

R. G. Brereton, “Introduction to multivariate calibration in analytical chemistry,” Analyst, vol. 125, no. 11, pp. 2125–2154, 2000, doi: 10.1039/b003805i.

A. Rohman and Y. B. C. Man, “The chemometrics approach applied to FTIR spectral data for the analysis of rice bran oil in extra virgin olive oil,” Chemom. Intell. Lab. Syst., vol. 110, no. 1, pp. 129–134, 2012, doi: 10.1016/j.chemolab.2011.10.010.

L. E. Rodriguez-Saona and M. E. Allendorf, “Use of FTIR for rapid authentication and detection of adulteration of food.,” Annu. Rev. Food Sci. Technol., vol. 2, pp. 467–483, 2011, doi: 10.1146/annurev-food-022510-133750.

J. Moros, S. Garrigues, and M. de la Guardia, “Vibrational spectroscopy provides a green tool for multi-component analysis,” TrAC - Trends Anal. Chem., vol. 29, no. 7, pp. 578–591, 2010, doi: 10.1016/j.trac.2009.12.012.

S. G. Husein, A. Firmansyah, and F. F. Yusuf, “ANALISIS KEMOMETRIKA SPEKTRUM Fourier transformed infrared (FTIR) DARI MINYAK NABATI,” J. Sains dan Teknol. Farm. Indones., vol. 9, no. 2, p. 45, 2020, doi: 10.58327/jstfi.v9i2.189.




DOI: https://doi.org/10.31284/j.iptek.2024.v28i1.5047

Refbacks

  • There are currently no refbacks.