APLIKASI SISTEM PERINGATAN TABRAKAN PADA KAPAL BERBASIS DATA GPS MENGGUNAKAN LOGIKA FUZZY

Sryang Tera Sarena, Ryan Yudha Adhitya, Catur Rakhmad Handoko, Noorman Rinanto

Abstract


Automatic Identification System (AIS)  is an important equipment in ship for giving ship’s information to other ships or harbour. Unfortunately, there is still no ship collision warning system included in AIS. Hence, an application of ship collision early warning system based on Global Positioning System (GPS) data is proposed in this paper. Here, the zero-order sugeno fuzzy logic is used to process the ships speed and position data. The output of this warning system are recommended ships speed and heading direction to prevent the ship collision based on IMO (International Maritime Organization) regulation. The object used is a ship prototype equiped with GPS. The testing is held in four position of the ship prototype againts static object. The positions are -45o, -25o, 25o dan 45o. The testing results yield 100% accuracy to the IMO regulation of the head on situations case.


References


. http://kemhubri.dephub.go.id/knkt/ntsc_maritime/Laut

. Laporan Final Investigasi Kecelakaan Pelayaran, Tubrukan antara KM. Journey dengan KM. Fatima III dan KM.Lambelu, KNKT, KemenHubRI .

. G. Dobie, H. Kidston, T. Chamberlain, C. Fields, 2015, Safety and Shipping Review 2015, Allianz Global Corporate and Specialty.

. International Maritime Organisation, "SOLAS - International Convention for the Safety of Life at Sea", diamandemen pada tahun 2002.

. L. P. Perera, J. P. Carvalho dan C. G. Soares, 2011, Fuzzy logic based decision making system for collision avoidance of ocean navigation under critical collision conditions, Journal of Marine Science Tchnology.

. Saiko, 2011, Perancangan Sistem Pengendalian Pada Kapal Berbasis Data Ais (Automatic Identification System ) untuk Menghindari Tabrakan, Tugas Akhir Jur. Tek. Fisika, Institut Teknologi Sepuluh Nopember.

. IMO (1972) Convention on the international regulations for preventing collisions at sea (COLREGs). http://www.imo.org/conventions/

. M. R. H. Mohd Adnan, Azlan Mohd Zain, Habibollah Haron, 2012, Fuzzy rule-based for predicting machining performance for SNTR carbide in milling titanium alloy (Ti-6Al-4v), 4th Conference on Data Mining and Optimization (DMO).

. Behzad Dehkordi, Mehdi Moallem, Amir Parsapour, 2011, Predicting Foaming Slag Quality in Electric Arc Furnace Using Power Quality Indices and Fuzzy Method. IEEE Transactions on Instrumentation and Measurement, Volume: 60, Issue: 12.

. X. F. Yu, W. L. Xu, F. Alam, J. Potgieter, C. F. Fang, 2012, Genetic fuzzy logic approach to local ramp metering control using microscopic traffic simulation, 19th International Conference on Mechatronics and Machine Vision in Practice (M2VIP). Pages: 290 - 297.

. H. M. Himawan, O. Setyawati, H. Suyono, 2016, Pemodelan Fuzzy Logic Control untuk Pengendali PWM pada Buck Converter, Jurnal Nasional Teknik Elektro dan Teknologi Informasi.

. Wen-Jer Chang, Feng-Ling Hsu, 2015, Mamdani and Takagi-Sugeno fuzzy controller design for ship fin stabilizing systems, 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD).

. Jorge Guevara, Roberto Hirata, Stéphane Canu, 2013, Kernel functions in Takagi-Sugeno-Kang fuzzy system with nonsingleton fuzzy input, IEEE International Conference on Fuzzy Systems (FUZZ)




DOI: https://doi.org/10.31284/j.iptek.2016.v20i2.48

Refbacks

  • There are currently no refbacks.