CLASSIFICATION OF ROASTING RATES IN COFFEE BEANS BY DIGITAL IMAGE PROCESSING USING THE NAIVE BAYES CLASSIFIER (NBC) METHOD

M. Mahaputra Hidayat, Eko Prasetyo, Bambang Teguh Wicaksono

Abstract


Coffee is the bean of the coffee plant and is the source of coffee drinks. Coffee beans must pass through the coffee roasting stage or also called coffee roasting, from this stage of the process the coffee will be roasted and this process also has its own level. At this stage of the roasting process coffee shop business people often do not know this process, then in this case used Local Binary Pattern (LBP) method. LBP is a simple and very efficient texture operator by labeling pixels by doing thresholding on each pixel neighbors and considers the result as a binary number. This method is used to obtain the texture ektrasi of an image. While for the classification method using the Naive Bayes Classifier (NBC) method. Naive Bayes is a simple probabilistic classifier that calculates a set of probabilities by summing the frequencies and combinations of values from a given dataset. The algorithm uses Bayes' theorem and assumes all the independent or non-interdependent attributes given by the values on the class variables. From the test results by comparing training data and testing data obtained an accuracy rate of 81%. For an image-based developed system with display recognition difficulties, this performance is good.

Keywords


Coffee beans; Coffee bean roasting; Local binary pattern; Naive bayes classifier; Classification system

Full Text:

PDF

References


L. Listyani Ayuningtyas, D. Bambang Hidayat, D. Suhardjo, and M. SpRKG, “Simulasi Dan Analisis Deteksi Pulpitis Melalui Periapikal Radiograf Menggunakan Metode Local Binary Pattern Dengan Klasifikasi Fuzzy Logic,” eProceedings Eng., vol. 2, no. 2, Aug. 2015, Accessed: May 12, 2023. [Online]. Available: https://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/view/647

F. N. Achsani, R. D. Atmaja, and R. Purnamasari, “Deteksi Adanya Cacat Pada Kayu Menggunakan Metode Local Binary Pattern,” eProceedings Eng., vol. 2, no. 1, Apr. 2015, Accessed: May 12, 2023. [Online]. Available: https://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/view/1685

N. Amynarto, Y. A. Sari, and R. C. Wihandika, “Pengenalan Emosi Berdasarkan Ekspresi Mikro Menggunakan Metode Local Binary Pattern,” JPTIIK, vol. 2, no. 10, 2018.

R. Amat, J. Y. Sari, and I. P. Ningrum, “IMPLEMENTASI METODE LOCAL BINARY PATTERNS UNTUK PENGENALAN POLA HURUF HIRAGANA DAN KATAKANA PADA SMARTPHONE,” JUTI J. Ilm. Teknol. Inf., vol. 15, no. 2, p. 152, Jul. 2017, doi: 10.12962/J24068535.V15I2.A612.

D. S. Auladi, B. Hidayat, and S. Darana, “Identifikasi Dan Klasifikasi Kemurnian Susu Sapi Berdasarkan Pemrosesan Sinyal Video Menggunakan Metode Local Binary Pattern (lbp) Dan Learning Vector Quantization (lvq),” eProceedings Eng., vol. 4, no. 2, Aug. 2017, Accessed: May 12, 2023. [Online]. Available: https://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/view/483

F. NURFAJAR, R. MAGDALENA, and S. SA’IDAH, “Deteksi Glaukoma pada Citra Fundus Retina menggunakan Metode Local Binary Pattern dan Support Vector Machine,” ELKOMIKA J. Tek. Energi Elektr. Tek. Telekomun. Tek. Elektron., vol. 10, no. 4, p. 769, Oct. 2022, doi: 10.26760/elkomika.v10i4.769.

Z. Y. Lamasigi, M. Hasan, and Y. Lasena, “Local Binary Pattern untuk Pengenalan Jenis Daun Tanaman Obat menggunakan K-Nearest Neighbor,” Ilk. J. Ilm., vol. 12, no. 3, pp. 208–218, Dec. 2020, doi: 10.33096/ilkom.v12i3.667.208-218.

J. Arifin, “KLASIFIKASI CITRA TEKSTUR KAYU MENGGUNAKAN GRAY LEVEL CO-OCCURANCE MATRIX DAN LOCAL BINARY PATTERN,” JIKO (Jurnal Inform. dan Komputer), vol. 6, no. 1, pp. 34–40, Feb. 2022, doi: 10.26798/JIKO.V6I1.557.

A. Kurniawardhani, N. Suciati, and I. Arieshanti, “KLASIFIKASI CITRA BATIK MENGGUNAKAN METODE EKSTRAKSI CIRI YANG INVARIANT TERHADAP ROTASI,” JUTI J. Ilm. Teknol. Inf., vol. 12, no. 2, pp. 48–60, 2014, Accessed: May 12, 2023. [Online]. Available: www.ee.oulu.fi/research/imag/texture/image_data/image_data/Brodatz32.zip.

Pulung Nurtantio Andono, T Sutojo, and Muljono, Pengolahan Citra Digital. Andi Offset, 2017.

E. Prasetyo, Data Mining : Konsep Dan Aplikasi Menggunakan Matlab. Andi Offset, 2012.

Ansar, Sukmawaty, Murad, S. A. Muttalib, R. H. Putra, and Abdurrahim, “Design and performance test of the coffee bean classifier,” Processes, vol. 9, no. 8, Aug. 2021, doi: 10.3390/PR9081462.

M. Rioarda Irfa’i, B. Fatkhurrozi, and I. Setyowati, “Klasifikasi Tingkat Kematangan Buah Kopi Menggunakan Algoritma Fuzzy C-Means,” THETA OMEGA J. Electr. Eng., 2021.

S. Raysyah, V. Arinal, and D. I. Mulyana, “KLASIFIKASI TINGKAT KEMATANGAN BUAH KOPI BERDASARKAN DETEKSI WARNA MENGGUNAKAN METODE KNN DAN PCA,” JSiI (Jurnal Sist. Informasi), vol. 8, no. 2, pp. 88–95, Sep. 2021, doi: 10.30656/JSII.V8I2.3638.

B. Cahyono, B. E. Cahyono, A. T. Nugroho, and I. W. Maulinida, “Klasifikasi Jenis Biji Kopi dengan Menggunakan Metode Gray Level Co-occurrence Matrix (GLCM),” TEKNOTAN, vol. 16, no. 3, pp. 191–196, Mar. 2023, doi: 10.24198/jt.vol16n3.9.




DOI: https://doi.org/10.31284/j.iptek.2023.v27i1.3697

Refbacks

  • There are currently no refbacks.