Klasifikasi Topeng Pandawa dengan SVM
Abstract
Klasifikasi merupakan tahapan tingkat lanjut dari sebuah keilmuan computer vision. Karena tujuan dari sebuah aplikasi rekognisi yaitu mengenali. Cara mengenali yaitu dengan cara klasifikasi. Banyak metode klasifikasi yang ada, namun pada penelitian ini menggunakan Support Vector Machine (SVM). SVM dipilih karena bisa mengatasi data dengan dimensi yang sangat besar tanpa mereduksi data, bekerja dengan data linier atau nonlinier dan membuat sebuah hyperplane yang memisahkan data antar kelas. Pada penelitian ini menggunakan data patung pandawa dengan lima kelas. Lima kelas terdiri dari kelas yudhistira, bima, arjuna, nakula dan sadewa. Kernel yang digunakan pada penelitian ini menggunakan Radial Basis Function (RBF). Hasil ujicoba pada penelitian mempunya rata-rata akurasi sebesar 0,848.
Full Text:
DownloadReferences
J. Kronenberger, D. Malysiak, and U. Handman, “Text and character recognition on metal-sheets,” 2017 IEEE Int. Conf. Inf. Autom. ICIA 2017, no. July, pp. 392–397, 2017, doi: 10.1109/ICInfA.2017.8078940.
Rismiyati, Khadijah, and A. Nurhadiyatna, “Deep learning for handwritten Javanese character recognition,” Proc. - 2017 1st Int. Conf. Informatics Comput. Sci. ICICoS 2017, vol. 2018-January, pp. 59–63, 2018, doi: 10.1109/ICICOS.2017.8276338.
Erwin, M. Fachrurrozi, A. Fiqih, B. R. Saputra, R. Algani, and A. Primanita, “Content based image retrieval for multi-objects fruits recognition using k-means and k-nearest neighbor,” Proc. 2017 Int. Conf. Data Softw. Eng. ICoDSE 2017, vol. 2018-January, pp. 1–6, 2018, doi: 10.1109/ICODSE.2017.8285855.
P. S. Ha and M. Shakeri, “License Plate Automatic Recognition based on edge detection,” 2016 Artif. Intell. Robot. IRANOPEN 2016, pp. 170–174, 2016, doi: 10.1109/RIOS.2016.7529509.
H. Hassen and S. Al-Maadeed, “Arabic handwriting recognition using sequential minimal optimization,” pp. 79–84, 2017, doi: 10.1109/asar.2017.8067764.
K. Machhale, H. B. Nandpuru, V. Kapur, and L. Kosta, “MRI brain cancer classification using hybrid classifier (SVM-KNN),” 2015 Int. Conf. Ind. Instrum. Control. ICIC 2015, no. Icic, pp. 60–65, 2015, doi: 10.1109/IIC.2015.7150592.
M. Mohamed Fathima, D. Manimegalai, and S. Thaiyalnayaki, “Automatic detection of tumor subtype in mammograms based on GLCM and DWT features using SVM,” 2013 Int. Conf. Inf. Commun. Embed. Syst. ICICES 2013, pp. 809–813, 2013, doi: 10.1109/ICICES.2013.6508213.
A. Patel and T. V. Kalyani, “Support Vector Machine with Inverse Fringe as Feature for MNIST Dataset,” Proc. - 6th Int. Adv. Comput. Conf. IACC 2016, pp. 123–126, 2016, doi: 10.1109/IACC.2016.32.
V. Wasule and P. Sonar, “Classification of brain MRI using SVM and KNN classifier,” Proc. 2017 3rd IEEE Int. Conf. Sensing, Signal Process. Secur. ICSSS 2017, pp. 218–223, 2017, doi: 10.1109/SSPS.2017.8071594.
T. Septianto, E. Setyati, and J. Santoso, “Digit Classification of Majapahit Relic Inscription using GLCM-SVM,” vol. 1, no. 2, pp. 46–54, 2018.
B. Sanjaa and E. Chuluun, "Malware detection using linear SVM," Ifost, Ulaanbaatar, 2013, pp. 136-138, doi: 10.1109/IFOST.2013.6616872.
G. Kesavaraj and S. Sukumaran, “A Study On Classification Techniques in Data,” 2013, doi: 10.1109/ICCCNT.2013.6726842.
A. Patle and D. S. Chouhan, “SVM kernel functions for classification,” 2013 Int. Conf. Adv. Technol. Eng. ICATE 2013, 2013, doi: 10.1109/ICAdTE.2013.6524743.
Refbacks
- There are currently no refbacks.