Klarifikasi Status Penderita Gizi Sunting Pada Balita Menggunakan Metode Random Forest

Yunita Nur Aprilia, Dian Ahkam Sani, Nanda Martyan Anggadimas

Abstract

Stunting in children, as in this case, is characterized by lower-than-average body growth. This is caused by a mismatch between long-term nutrient intake and the body's needs. Possible impacts include delayed cognitive development, impairments in learning ability, as well as an increased risk of metabolic syndrome. To overcome these problems, a structured and data-based system is needed with one of the agreements used, namely the Random Forest Method on the system using stunting nutrition data for toddlers as the basis for the classification process. In developing the system that was built to help track the health of young children, especially stunting by using several indicators to support innovation, provide a classification model for toddlers suffering from stunting nutrition, and measure and evaluate the performance results of the Random Forest Method against the data variables used. From this study, it can be shown that the results of this study are that this system has successfully made a classification model and is very effective in measuring and evaluating the performance results of the Random Forest Method in the Status Classification of Stunting Nutritional Patients in Toddlers by using a dataset of 300 data so that it produces an average accuracy of 81%, an average result of 76%, an average recall result of 69%, and the average F1 score result is 72%.

Full Text:

PDF

References

Referensi

Aji, Priyo Wahyu Setiyo, S. Suprianto, and Rohman Dijaya. "Prediksi Penyakit StrokeMenggunakan Metode Random Forest." Kesatria:Jurnal Penerapan Sistem Informasi (Komputer dan Manajemen) 4.4 (2023): 916-924.

Al-Husaini, M., Hoeronis, I., Lumana, H. H., & Puspareni, L. D. Deteksi Dini Stunting Anak Balita Berbasis Ensemble Machine Learning di Purbaratu Kota Tasikmalaya. learning, 9, 10.

Arisandi, Riza Rizqi Robbi, Budi Warsito, and Arief Rachman Hakim. "Aplikasi Naïve Bayes Classifier (Nbc) Pada Klasifikasi Status Gizi Balita Stunting Dengan Pengujian K- Fold Cross Validation." Jurnal Gaussian 11.1 (2022): 130-139.

Atikah, R., Yulidasari, F., Ocktaviana, A., & Anggraini, L. (2018). Stunting dan Upaya Pencegahannya (Hadianor (ed.)). CV. Mine.

Drajana, I. C. R., & Bode, A. (2022). Prediksi Status Penderita Stunting Pada Balita Provinsi Gorontalo Menggunakan K-Nearest Neighbor Berbasis Seleksi Fitur Chi Square. Jurnal Nasional Komputasi dan Teknologi Informasi (JNKTI), 5(2).

F. K. Rahim, “ Faktor risiko underweight balita umur 7-59 bulan, ” KEMAS J.Kesehat. Masy., vol. 9, no. 2, pp. 115– 121, 2014.

F. O. Aridiyah, N. Rohmawati, and M. Ririanty, “ Faktor-faktor yang Mempengaruhi Kejadian Stunting pada Anak Balita di Wilayah Pedesaan dan Perkotaan (The Factors Affecting Stunting on Toddlers in Rural and Urban Areas), ” Pustaka Kesehat., vol. 3, no. 1, pp. 163– 170, 2015.

Juwariyem, J., & Sriyanto, S. (2023). PREDIKSI STUNTING PADA BALITA MENGGUNAKAN ALGORITMA RANDOM FOREST. IndraTech, 4(1), 29-37.

Kemenkes RI. (2011). KEPMENKES RI Tentang Standar Antropometri Penilaian Status Gizi Anak. In Jornal de Pediatria (Vol. 95, Issue 4, p. 41).

Kemenkes, R. (2020). Peraturan Kementrian Kesehatan Republik Indonesia Nomor 2 Tahun 2020 Tentang Standar Antropometri Anak. 68(1), 1– 12

M. R. Nugroho, R. N. Sasongko, and M. Kristiawan, “ Faktor-faktor yang Mempengaruhi Kejadian Stunting pada Anak Usia Dini di Indonesia, ” J. Obs. J. Pendidik. Anak Usia Dini, vol. 5, no. 2, pp. 2269– 2276, 2021.

Organization, W. H. (2006). WHO child growth standards: length/height-for-age, weight for-age, weight-for-length, weight-for-height and body mass index-for-age: methods and development. World Health Organization.

Reza, A. A. R., & Rohman, M. S. (2024). Prediction Stunting Analysis Using Random Forest Algorithm and Random Search Optimization. JOURNAL OF INFORMATICS AND TELECOMMUNICATION ENGINEERING, 7(2), 534-544.

Siti, M. (2022). Perancangan Sistem Informasi Aplikasi Gizi Balita Menggunakan Naïve Bayes Classification Dan K-Means (Doctoral dissertation, UNSADA).

Tim Riskesdas 2018, (2019). Laporan Provinsi Jawa Timur Riskesdas 2018. Surabaya: Lembaga Penerbit Bidang Litbang Kesehata

Wahyudi, R. (2018). pertumbuhan dan perkembangan balita stunting

(The Growth and Development Overview of the Stunting). Jurnal Keperawatan, IV(1)

Wahyudin, W. C., Hana, F. M., & Prihandono, A. (2023). Prediksi Stunting Pada Balita Di Rumah Sakit Kota Semarang Menggunakan Naive Bayes. Jurnal Ilmu Komputer Dan Matematika, 4 (1), 32-36.

Welassih, B. D. & Wirjatmadi, R. B., 2012. Beberapa Faktor Yang Berhubungan Dengan Status Gizi Balita Stunting. The Indonesian Journal of Public Health, VIII(3), pp. 99-104), 56–62.

Refbacks

  • There are currently no refbacks.