Klastering K-Medoid Untuk Entrepreneur Sorgum
Abstract
Sejak tahun 2009 Universitas Wijaya Kusuma Surabaya telah membentuk Unit Entrepreneurship Sorgum (UES) dan bekerjasama dengan produsen sorgum di beberapa daerah di Pulau Jawa. UES ingin membuat sebuah sistem yang dapat membantu mengklasifikasikan secara jelas kegiatan masing-masing entrepreneur sorgum, sehingga UES dapat memberikan pendampingan usaha kepada entrepreneur sorgum secara tepat sasaran. Jumlah kelompok yang menerima pendampingan pengusaha sorgum dibagi menjadi 5 kelompok, yaitu: Entrepreneur sorgum yang memiliki modal usaha paling kecil, entrepreneur sorgum yang memiliki pelanggan tetap yang banyak, Entrepreneur sorgum yang memiliki karyawan sedikit, Entrepreneur sorgum yang mempromosikan di media sosial, Entrepreneur sorgum yang berpenghasilan paling sedikit. Peneliti menggunakan algoritma k-medoids dari teknik clustering dalam mengklasifikasikan pengusaha sorgum. Hasil penelitian menunjukkan bahwa terdapat 6 pengusaha sorgum di klaster 1, 9 Entrepreneur sorgum di klaster 2, 4 Entrepreneur sorgum di klaster 3, 6 Entrepreneur sorgum di klaster 4 dan 10 Entrepreneur sorgum di klaster 5. Selain itu, hasil evaluasi menggunakan metode K-Medoids diperoleh Silhouette Index sebesar 0,5787 dan termasuk dalam kriteria “struktur yang masuk akal telah ditemukan”.
Full Text:
downloadReferences
Adya Hermawati, Sri Jumini, Mardiah Astuti, Fajri Ismail, Robbi Rahim. 2020. Unsupervised Data Mining with K-Medoids Method in Mapping Areas of Student and Teacher Ratio in Indonesia. TEM Journal. Volume 9, Issue 4, Pages 1614‐1618, ISSN 2217‐8309. https://doi.org/10.18421/TEM94‐37
Alessio Martino, Antonello Rizzi and Fabio Massimo Frattale Mascioli. 2017. Efficient Approaches for Solving the Large-Scale k-medoids Problem. Proceedings of the 9th International Joint Conference on Computational Intelligence (IJCCI 2017), pages 338-347. 2017. https://doi.org/10.5220/0006515003380347.
Bygrave, D.W., Zacharakis. 2010. A. Entrepreneurship. New York: Wiley. Page 619.
C. Dewi, B. Y. Gautama, and P. A. Mertasana, 2017. Analysis of Clustering for Grouping of Productive Industry by K-Medoid Method. Int. J. Eng. Emerg. Technol., vol. 2, no. 1, p. 26. https://doi.org/10.24843/ijeet.2017.v02.i01.p06.
C Winarti, A B Arif, A Budiyanto and N Richana. 2020. Sorghum development for staple food and industrial raw materials in East Nusa Tenggara, Indonesia: A review. IOP Conference Series Earth and Environmental Science. 2020. https://doi.org/10.1088/1755-1315/443/1/012055
Chunmei Fan; Taohong Zhang; Zhiyong Yang; Li Wang. 2015. A Text Clustering Algorithm Hybriding Invasive Weed Optimization with K-Means. IEEE 12th Intl Conf on Ubiquitous Intelligence and Computing and 2015 IEEE 12th Intl Conf on Autonomic and Trusted Computing and 2015 IEEE 15th Intl Conf on Scalable Computing and Communications and Its Associated Workshops (UIC-ATC-ScalCom). https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP.2015.241.
Chatti Subbalakshmi, G Rama Krishna, S Krishna Mohan Rao, P Venketeswa Rao. 2014. A Method to Find Optimum Number of Clusters Based on Fuzzy Silhouette on Dynamic Data Set. International Conference on Information and Communication Technologies (ICICT). https://doi.org/10.1016/j.procs.2015.02.030
D. Marlina, N. Lina, A. Fernando, and A. Ramadhan. 2018. Implementasi Algoritma K-Medoids dan K-Means untuk Pengelompokkan Wilayah Sebaran Cacat pada Anak. J. CoreIT. vol. 4, no. 2, p. 64, 2018, https://doi.org/10.24014/coreit.v4i2.4498.
Fatima Batool, hristian Hennig. 2021. Clustering with the Average Silhouette Width. Computational Statistics & Data Analysis Journal. https://doi.org/10.1016/j.csda.2021.107190
Gintare Giriuniene, Lukas Giriunas, Gintaras Cernius. 2016. Identification Research of the Concept of Entrepreneurship: The Theoretical Aspect. International Journal of Economics and Financial Issues. ISSN: 2146-4138.
Han, J, Kamber, M, & Pei, J. 2012. Data Mining: Concept and Techniques, Third Edition. Waltham: Morgan Kaufmann Publishers.
Héctor Montiel-Campos. 2021. Entrepreneurial Alertness, Innovation Modes, And Business Models in Small- And Medium-Sized Enterprises: An Exploratory Quantitative Study. J. Technol. Manag. Innov. Volume 16, Issue 1. https://doi.org/10.4067/S0718-27242021000100023
Lakshmanaprabu, S. K., Shankar, K., Gupta, D., Khanna, A. Rodrigues, J. J., Pinheiro, P. R., & de Albuquerque, V. H. C. 2018. Ranking analysis for online customer reviews of products using opinion mining with clustering. Complexity Journal. Hindawi. https://doi.org/10.1155/2018/3569351
Johannes Petrus, Ermatita, Sukemi. 2019. Soft and Hard Clustering for Abstract Scientific Paper in Indonesian. International Conference on Informatics, Multimedia, Cyber and Information System (ICIMCIS).
Kaur, Noor K., Kaur, Usvir., & Singh, Dr. Dheerendra. 2014. KMedoids Clustering Algorithm – A Review. International Journal of Computer Application and Technology (IJCAT). ISSN. 2349-1841 Vol. 1, Issue 1.
Kipchumba Judith, Edith Gathungu, Oscar Ingasia Ayuya, Paul Kimurto. 2021. Effects of Production and Market Innovations on the Level of Competitiveness of Sorghum Small Scale Agrienterprises. Modern Economy.https://doi.org/10.4236/me.2021.127060
Mehdi Allahyari, Seyedamin Pouriyeh, Mehdi Assef, et. al. 2017. A Brief Survey of Text Mining: Classification, Clustering and Extraction Techniques. KDD Bigdas, August 2017, Halifax, Canada. https://doi.org/10.48550/arXiv.1707.02919
Md. Saddam Hossain, Md. Nahidul Islam Md, Mamunur Rahman, Mohammad Golam Mostofa, Md. Arifur Rahman Khan. 2022. Sorghum: A prospective crop for climatic vulnerability, food and nutritional security. Journal of Agriculture and Food Research. Volume 8. https://doi.org/10.1016/j.jafr.2022.100300
Min Ren, Peiyu Liu, Zhihao Wang, and Jing Yi. 2016. A Self-Adaptive Fuzzy C-Means Algorithm for Determining the Optimal Number of Clusters. Computational Intelligence and Neuroscience. https://doi.org/10.1155/2016/2647389
Nurhayati, Nadika Sigit Sinatrya, Luh Kesuma Wardhani, Busman. 2018. Analysis of K-Means and K-Medoids’s Performance Using Big Data Technology. The 6th International Conference on Cyber and IT Service Management (CITSM 2018). https://doi.org/10.1109/CITSM.2018.8674251
Oakey, R. 2012. High technology entrepreneurship. London: Routledge. Page 186.
Rao P., S., B.V.S Reddy, N. Nagaraj, and H.D. Upadhyaya. 2014. Sorghum production for diversified uses. In: Genetics, Genomics and Breeding of Sorghum (Eds: Yi-Hong Wang, Upadhyaya, H.D, and C. Kole). CRC Press. Boca Raton. Page 344.
Rika Elizabet Sihombing, Dewi Rachmatin, Jarnawi Afgani Dahlan. 2019. Program Aplikasi Bahasa R Untuk Pengelompokan Objek Menggunakan Metode K-Medoids Clustering. Jurnal EurekaMatika.
Roper, S. 2013. Entrepreneurship: A global perspective. London: Routledge. Page 153
Samudi Samudi, S. Widodo, Herlambang Brawijaya. 2020. The K-Medoids Clustering Method for Learning Applications during the COVID-19 Pandemic. Sinkron : Jurnal dan Penelitian Teknik Informatika, Volume 5, Number 1. https://doi.org/10.33395/sinkron.v5i1.10649
Sarita Verma, Neelam Khetrapaul. and Vandana Verma. 2018. Development and Standardization of Protein Rich Sorghum Based Cereal Bars. Int. J. Curr. Microbiol. App. Sci. Volume 7(5): 2842-2849. https://doi.org/10.20546/ijcmas.2018.705.330
Uthayakumar, J., Metawa, N., Shankar, K., & Lakshmanaprabu, S. K. 2018. Financial crisis prediction model using ant colony optimization. International Journal of Information Management. https://doi.org/10.1016/j.ijinfomgt.2018.12.001.
Uthayakumar, J., Metawa, N., Shankar, K., & Lakshmanaprabu, S. K. 2018. Intelligent hybrid model for financial crisis prediction using machine learning techniques. Information Systems and e-Business Management, Springer. Vol. 18(4), pages 617-645, December. pp 1-29. https://doi.org/10.1007/s10257-018-0388-9.
Weksi Budiaji and Friedrich Leisch. 2019. Simple K-Medoids Partitioning Algorithm for Mixed Variable Data. MDPI Journal Algorithm. https://doi.org/10.3390/a12090177
Xing Li, Ying Jia. 2015. Characteristics influence for Entrepreneurship behavior ability. International Conference on Education, Management, Commerce and Society (EMCS 2015).
Zhiguo Liu, Changqing Ren and Wenzhu Cai. 2020. Overview of clustering analysis algorithms in unknown protocol recognition. MATEC Web of Conferences 309. MATEC Web of Conferences 309, 03008 (2020) https://doi.org/10.1051/matecconf/202030903008
Refbacks
- There are currently no refbacks.