Modifikasi Kombinasi Particle Swarm Optimization dan Genetic Algorithm untuk Permasalahan Fungsi Non-Linier

Muchamad Kurniawan, Nanik Suciati

Abstract

Particle Swarm Optimization (PSO) is the population-based optimization algorithm and the generation of random values. The deficiency of the PSO algorithm is prematurely convergent, meaning it quickly finds solutions to local solutions. PSO tidak mampu untuk mencari ruang solusi lebih luas. PSO can not afford to search for wider solution space. In this study modification of the combination of PSO with Genetic Algortihm (GA) or we call M-PSOGA. The advantage of GA taken is to find a wider solution space. M-PSOGA is evaluated on non-linear function problem. The results obtained by M-PSOGA produce the best solution from its predecessor method, PSO and PSOGA. Better on the results of the solutions obtained and the convergent velocity on global solutions.

Keywords: Particel Swarm Optimization, Genetic Algorithm, Non-Linier Function.

Full Text:

PDF PDF

References

Chang, Jian-Xi., Bai,Tao., Huang, Qiang., Yang, Da-Wen., (2013), “Optimization of Water Resources Untilization by PSO-GAâ€, Springer Jurnal Water Resour Manage hal.3535-3540.

Gang, Ma., Wei, Zhou., (2012), “A novel particle swarm optimization algorithm based on particle migrasionâ€, ELSEVIER, Applied Mathematics and Computation 218 (2012) 6620–6626.

J. Kennedy and Eberhart, Russell. (1995), “Particle Swarm Optimizationâ€, IEEE, Internatinal Conference on Neural Network, 1995.

Yang, Xueming., Yuan, Jinsha., Yuan., Jiangye., Mao., Huina. (2007), “A modiï¬ed particle swarm optimizer with dynamic adaptationâ€, ELSEVIER, Applied Mathematics and Computation 189 (2007) 1205–1213.

Yang, Cheng-Hong., Tsai, Sheng-Wei., Chuang, Li-Yeh. (2011), “A Modified Particle Swarm Optimization for Global Optimizationâ€, International Journal of Advancements in Computing Technology Volume 3, Number 7, August 2011.

Wang, Hui., Sun, Hui., Li, Changhe., Rahnamayan, Shahryar., Pan, Jeng-shyang. (2012), “Diversity enhanced particle swarm optimization with neighborhood searchâ€, ELSEVIER, Information Sciences 223 (2013) 119–135.

Santoso, Budi., Willy,Paul. (2011), Metoda Metaheuristik konsep dan implementasi ,Guna Wijaya,Surabaya.

Rini, Dian Palupi., Shamsuddin, Siti Mariyam., Yuhanis, Sophiayati

Yuhanis. (2014), “Particle Swarm Optimization for ANFIS Interpretability and Accuracyâ€, Springer Jurnal Soft Computing.

Ling, Sai Ho., Nguyen, Hung T., Leung, Frank H.F., Chan, KitYan., Jiang,

Frank., (2012), “Intelligent Fuzzy Particle Swarm Optimization with Cross-Mutated Operasionâ€, IEEE, WCCI World Congress On Computer Intelligence June 2012, Brisbane Australia.

Refbacks

  • There are currently no refbacks.